

182818284

WP 5 Control and Forecasting for Smart Energy Systems

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)}{i!}$

John Bagterp Jørgensen Henrik Madsen, Jozsef Gaspar, Rune Grønborg Junker

CITIES Annual Meeting May 30-31, 2017 Danish Technological Institute, Aarhus

DTU Compute Institut for Matematik og Computer Science

Develop and test optimization and forecast based predictive control systems for more efficient and flexible operation of integrated energy systems.

Hierarchical Control Structure

ENERGY SYSTEMS

3 DTU Compute, Technical University of Denmark

Smart Energy Systems

- Thermal Storage
 - Heating of floors etc
 - Heating of water accumulation tanks
 - Refrigeration Systems
- 4 DTU Compute, Technical University of Denmark

- Power / Heat Producers
 - Wind Turbines
 - Photovoltaic Solar Modules
 - Solar Panels
 - CHP Plants
 - Fuel Cells

Forecast Based Hierarchical MPC

Computational Performance

Mathematical / Statistical Modelling

Economic MPC Mathematical Optimization

The portfolio power generation problem can be stated as

$$\min_{\{u_k\}_{k=0}^{N-1}} \phi = \sum_{k=0}^{N-1} c' u_k
s.t. \qquad x_{k+1} = A x_k + B u_k + E d_k \quad k = 0, 1, \dots, N-1
\qquad y_k = C x_k \qquad \qquad k = 1, 2, \dots, N \\ u_{\min} \le u_k \le u_{\max} \qquad \qquad k = 0, 1, \dots, N-1 \\ \Delta u_{\min} \le \Delta u_k \le \Delta u_{\max} \qquad \qquad k = 0, 1, \dots, N-1 \\ y_k \ge r_k \qquad \qquad k = 1, 2, \dots, N$$

The parameters for this problem are

- Initial state, x_0 , and previous decision, u_{-1}
- Predicted loads on non-controllable generators (e.g. wind speed on wind turbines): $\{d_k\}_{k=0}^{N-1}$
- Predicted power demand: $\{r_k\}_{k=1}^N$

Technical University of Denmark

DTU

Conditional Value at Risk (CVaR)

Hierarchical Control Structure

Disturbances

- wind speed
- ambient temp
- solar radiation

Control of Smart Energy Systems = Economic MPC

Wind Power Forecast

ENERGY UNITS

13 DTU Compute, Technical University of Denmark

1

Control of Individual Energy Units

Raspberry Pi

Embedded MPC Algorithms for control of individual energy units

$$\min_{\substack{\{u_k, x_{k+1}\}_{k=0}^{N-1}}} \phi = \sum_{k=0}^{N-1} l_k(x_k, u_k) + l_N(x_N) \quad (1a)$$
s.t. $x_{k+1} = A_k x_k + B_k u_k + b_k \quad k \in \mathcal{N} \quad (1b)$
with $\mathcal{N} = \{0, 1, \dots, N-1\}$ and stage costs defined by
$$l_k(x_k, u_k) = \frac{1}{2} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q_k & M'_k \\ M_k & R_k \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \begin{bmatrix} q_k \\ s_k \end{bmatrix}' \begin{bmatrix} x_k \\ u_k \end{bmatrix} + \rho_k \quad (2a)$$

$$l_N(x_N) = \frac{1}{2} x'_N P_N x_N + p'_N x_N + \gamma_N \quad (2b)$$

Temperature Control

Danfoss

•NEST (Google)

Model of a ground-source heated building

Energy conservation

$$C_{pr}\dot{T}_r = Q_{fr} - Q_{ra} + (1-p)\phi_{sol}$$

$$C_{pf}\dot{T}_{f}=Q_{wf}-Q_{fr}+p\phi_{sol}$$

$$C_{pw}\dot{T}_w = Q_c - Q_{wf}$$

<u>Heat Transfer</u>

 $Q_{fr} = UA_{fr}(T_f - T_r)$ $Q_{ra} = UA_{wf}(T_w - T_f)$ $Q_{fr} = UA_{ra}(T_r - T_a)$

T_{gr}

Rigorous heat pump model

Temperature

Realistic Thermodynamics needed www.psetools.org

Rigorous heat pump model

Algorithm	1:	COP	of	a	heat	pump
Dequinet						

Require:

Ground temperature, T_{gr}

Water tank temperature, T_w

Heat exchanger temperature difference, ΔT

Compute using ThermoLib:

Evaporator pressure, $P_2 = p_{sat}(T_2)$, where $T_2 = T_{gr} - \Delta T$ Enthalpy out from evaporator, $h_2 = h(T_2, P_2)$ Entropy out from evaporator, $s_2 = s(T_2, P_2)$ Condenser pressure, $P_4 = p_{sat}(T_4)$, where $T_4 = T_w + \Delta T$ Solve $s_2 - s_3 = 0$ for T_3 , where $s_3 = s(T_3, P_4)$ Enthalpy out from compressor, $h_3 = h(T_3, P_4)$ Enthalpy out from condenser, $h_4 = h(T_4, P_4)$

 $COP = \frac{h_3(T_3, P_4) - h_4(T_w + \Delta T, P_4)}{h_3(T_3, P_4) - h_2(T_{gr} + \Delta T, P_2)}$

Temperature

COP is a nonlinear function of T_w and T_{gr}

Economic MPC

$$\begin{split} \min_{\hat{u}} & \phi = \int_{t_0}^{t_f} (C(\hat{x}(t), \hat{u}(t), \hat{d}(t)) + V(\hat{y}(t))) dt, \\ \text{s.t.} & \hat{x}(t_0) = \bar{x}_{k|k}, \ k \geq 0 \\ & \dot{\hat{x}}(t) = A\hat{x}(t) + B\hat{u}(t) + E\hat{d}(t), \ t \in [t_0, t_f] \\ & \hat{y}(t) = C\hat{x}(t), \ t \in [t_0, t_f] \\ & u_{min}(t) \leq \hat{u}(t) \leq u_{max}(t), \ t \in [t_0, t_f] \\ & \Delta u_{min}(t) \leq \Delta \hat{u}(t) \leq \Delta u_{max}(t), \ t \in [t_0, t_f] \\ & y_{min}(t) - v(t) \leq \hat{y}(t), \ t \in [t_0, t_f] \\ & y_{max}(t) + v(t) \geq \hat{y}(t), \ t \in [t_0, t_f] \\ & v(t) \geq 0, \ t \in [t_0, t_f] \end{split}$$

 $\hat{x} = \begin{bmatrix} T_r & T_f & T_w \end{bmatrix}^T \qquad \hat{u} = Q_c$ $\hat{y} = T_r$ $\hat{d} = \begin{bmatrix} T_a & \phi_{sol} \end{bmatrix}^T$

Energy cost function

Initial estimate from a Kalman filter

Linear house model

Bound constraints Rate of change constraints

Soft thermal comfort constraints

Economic MPC

Special nonlinear	Linear economic MPC	Linear economic MPC
economic MPC	(LMPC)	constant COP
(NMPC)		(LMPC w./ COP = 4.5)

Energy cost function: $C(\hat{x}, \hat{u}, \hat{d}) = p_{el}(t)W_c(t)$

 $W_c = \frac{Q_c}{\eta COP(T_w, T_{gr})}$

COP is calculated using estimates of T_w and forecasts of T_{gr}

$$W_c = \frac{Q_c}{\eta COP}$$

 $W_c = \frac{Q_c}{\eta COP}$

COP is recalculated at each iteration step

COP is constant (COP = 4.5)

Economic Nonlinear MPC

DTU

Economic Linear MPC – Constant COP

Computational performance: NMPC vs LMPC

NMPC and LMPC have comparable computation time

Computational performance: Matlab vs Linux-C

Simulation platform	Cold	Average	
	start (ms)	warm start (ms)	
Raspberry Pi 2B	2.5	0.86	
Workstation (C)	0.22	0.069	
Workstation (Matlab)	15.51	2.07	

Features

- Simplicity easy to
 - Commission
 - Tune
 - Maintain
- Customizable and adaptable to
 - Process dynamics
 - Process modifications
 - Operational strategies
- Includes frontier technologies in
 - Mathematical Optimization
 - Process Control
 - Software Engineering
 - Mathematical/Statistical Modeling and Simulation

Software Implementation

Rasperry PI C/C++

Smart Phone C/Java/Matlab

Thank You – Q & A

John Bagterp Jørgensen

Technical University of Denmark

E-mail: jbjo@dtu.dk

DTU Compute Department of Applied Mathematics and Computer Science

