Market potential for PVT

Svend Erik Mikkelsen, COWI

1 9 OKTOBER 2019 IEA TASK 60

The potential size of the market is obviously very big

What determines the size of the market

- > The decision maker
 - > Private houseowner
 - > Building owner
 - > Project developers
 - > Housing associations (in Denmark: Social housing sector, 20% of all housing units)
 - > Industry decision makers

How does the decision maker deside

> Depends on three things

- > The cost effectiveness of the PVT technology compared to the alternatives
 - > Investment usually higher for PVT than for the alternative
 - > LCOE Levelized Cost of Energy (compare LCOE for PVT with the alternatives)
 - > Cost of financing
 - > Cost of maintenance
 - > Cost of possible supplementary energy
 - > Cost of reinvestments
 - > Environmental costs (CO₂ tax, other tax benefits)
- Legislative matters
 - > Possible subsidies (for example x % refund of the investment). Included in the LCOE
 - > Legal requirements (building regulations, phase-out of gas, compulsion)
- > Other motivations
 - > Green, recommended by a trusted, special offer, interesting technology ...

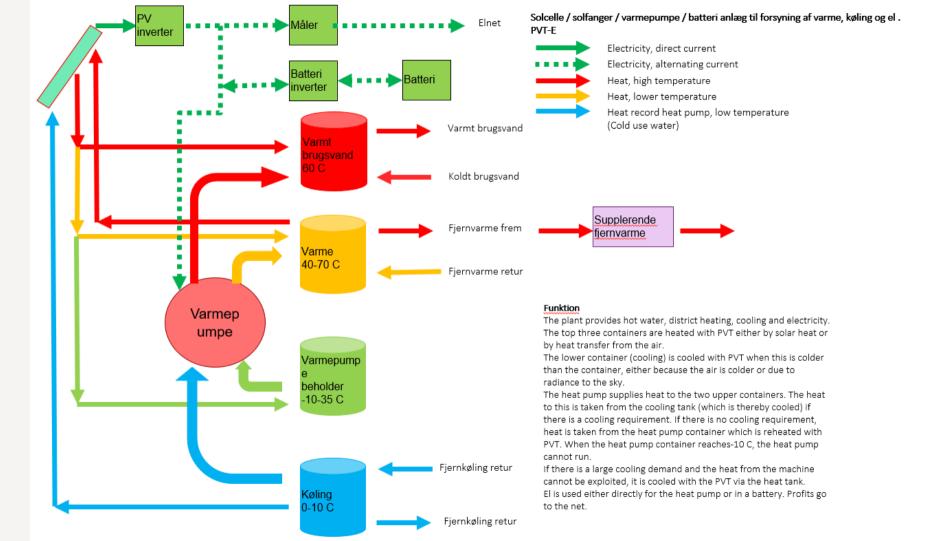
Complication for the consultant or sales person who want to advise on an informed basis

- > The decision makers in the various sectors have very different conditions
 - > Different time perspective (short term, long term)
 - > Different priorities in terms of climate change
 - > Different expectations regarding payback time or internal rate of return
 - Different opportunities for financing
 - > Different legislative conditions
 - > Different architectural views
 - > Possible different subsidies

Conclusion (for the consultant or marketing people)

- > Each costumer represent a combination of these
- Necessary to treat each case individually
- Not possible to analyze all aspects and compare all potential technologies (only in very big projects)
- > In reality many decisions are made on a not fully informed basis

How do we do that ?


- > Overview of technologies
- > Analysis and comparison of technologies

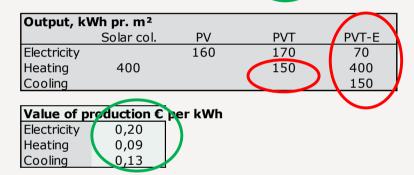
PVT Technology

- > PVT (not energy-absorbing, collector warmer than air)
 - > Supply heat when collector temperature is higher than the demanded temperature
 - > Can operate without heat pump
 - > Only supplementary energy
- > PVT-E (with energy-absorbing)
 - > With a heat pump. Heating can be produced at any time.
 - > Combined with cooling.
 - > Formation of ice
- > BIPVT-E
 - > PVT-E building integrated
- > PVT for cooling
 - > Free cooling when demanded cooling temperature is lower than collector temperature.
 - > Radiative cooling when the collector temperature is lower due to sky radiation

Most relevant related to housing – market size

		Competition	Minus	Plus	Size of market
1	Domestic hot water with PVT-E in single family houses	Solar thermal	Other technology needed for heating demand. Not good if district heating. Complicated small plant.	Cover all demand for hot water. Possibility for CO2 reduction for houseowner.	Small
2	IPVI-E for multianartment	Air source heat pump and PV	Other technology needed for heating demand. Less good if district heating.	Cover all demand for hot water. Possibility for CO2 reduction. Less noise than with air source.	Medium
3	bosting for cingle tamily	AIF SOURCE DEAL	May not be competitive to	The only source of energy. CO2 neutral if combined with PV and battery. Less noise than air source. Good for new buildings.	large
4	Ineating for multianartment	Air source heat pump and PV	combined with PV	Buildings using central heating with gas. Can supply 80% with gas as supplement. Extended when gas is disconnected.	large
5	No 3 with cooling in southern Europe	Air source heat pump. Split units. PV.	-	Mainly for new buildings. CO2 neutral or plus energy.	large

The challenge



Simple calculation

Somewhat known

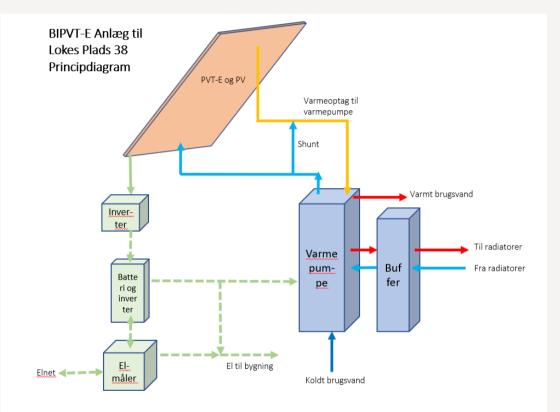
System dependent complicated analysis

Investment, system cost € per m ²					
	€/w	w/m²	€/m²		
Solar collec	tor		300		
PV	1,7	180	306		
PVT	2,3	180	414		
PVT-E	2,5	180	450		

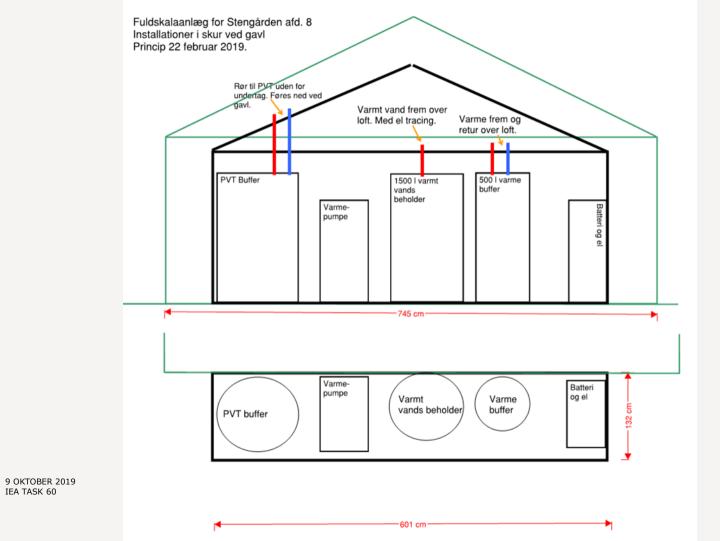
Value of production € pr. år pr. m²						
	Solar col.	PV	PVT	PVT-E		
Electricity		32	34	14		
Heating	37		14	37		
Cooling				20		
SUM	37	32	48	71		

Simpel pay back time						
	Solar col.	PV	PVT	PVT-E		
TBT	8	10	9	6		

Difficult case: PV and PVT-E project in the social housing sector


- > Very big market in Denmark (20%)
- > Big potential for PV and PVT-E
- > Multiapartment and linked buildings from 60ties and 70ties
- > Need renovation (new roof (asbestos), new heating system, boilers etc).
- > Many have district heating, others gas.
- > Highly regulated and supported sector
- > Need for thorough analysis
- > Must be decided by the residence
- > Need exact calculation of the consequences for the future rent and energy expenses

Pilot project with PVT-E, heat pump and battery


Case Stengården

17

COWI

Case Stengården

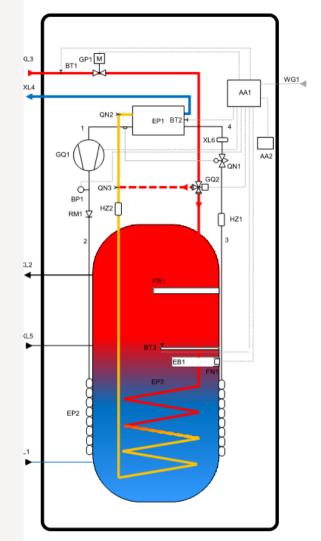
Project with Metro Therm

RACELL, Denmark

Triple Solar, Netherlands

Talum, Slovenia

19 | 9 OKTOBER 2019 IEA TASK 60


Microbooster

https://www.metrotherm.dk/en/products/heatpumps/domestic-hot-water-heat-pumps/metromicrobooster

COWI

Microbooster

