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General introduction

The Problem and a Generic Solution
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U=0.86 W/m2K U=0.21 W/m2K

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)
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Efficiency and Flexibility
identified using
Al and grey-box modelling
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Solutions
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Framework
Conditions

Models (eg. grey-box models)

Buildings;
Districts;
Cities
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Case Study No. 1

Characterization of Energy Efficiency of Buildings using
(Smart) Meter Data
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Model for the heat dynamics

I

@ Measurements:

=== — Indoor air temp

i

T. — Radiator heat sup.
— Ambient air temp
— Solar radiations
H;, @ Hidden states are:

T;
- ] — Heat accumulated in the
b | building

— k: Fraction of solar radiation
Il entering the interior
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"Shat, jeg kan se pa k-veerdierne, at vinduerrmne skal pudsas"
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Perspectives

e l|dentification of most
problematic buildings

e Automatic energy labelling

e Recommendations:
+ Should they replace the windows?
# Or put more insulation on the roof?
@+ Or tigthen the building?
>

Should the wall against north be
further insulated?

&

e Better control of the heat
supply (using the flexibility)
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Case study No. 2

Control of Power Consumption using
the Thermal Mass of Buildings
(Peak shaving)
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Aggregation (over 20 houses)
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Response on
Price Step Change

Olympic Peninsula
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Control of Energy Consumption =
Model parameters
Price-response
Jv — - estimator <

Consumption Aggregated

references Price generator Prices Price-responsive consumption

- (controller) o> consumption @ >
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Control performance

Considerable reduction in peak consumption
Mean daily consumption shift
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General Introdution

Flexibility Function and Flexibility Index
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Characteristics

Flexibility Function
(Estimator)

i

Penalty Response

r

Figure 1: A smart building is able to respond to a penalty or external control
signal.
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Flexibility Function

I
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Figure 2: The energy consumption before and after an increase in penalty. The
red line shows the normalized penalty while the black line shows the normal-
ized energy consumption. The time scale could be very short with the units be-
ing seconds or longer with units of hours. At time 2.5 the penalty is increased,
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DTU
Penalty Function (examples) =

e Real time CO,. If the real time (marginal) CO, emis-
sion related to the actual electricity production is used as
penalty, then, a smart building will minimize the total car-
bon emission related to the power consumption. Hence,
the building will be emission efficient.

e Real time price. If a real time price 1s used as penalty, the
objective 1s obviously to minimize the total cost. Hence,
the building is cost efficient.

e Constant. If a constant penalty is used, then, the con-
trollers would simply minimize the total energy consump-
tion. The smart building 1s, then, energy efficient.

= Innovation Fund Denmark FLEXIBLE
/ CITIES - FE[] ENERGY
g Centre for IT Intelligent Energy Systems Data-driven methods for energy efficiency and flexibility DENMARK



Peak shaving,
voltage conbrol, Energy efficient, Emission efficient, Cost efficient
Balancing, .. depending on selected Penalty Signal

Congestion managemeant,

Flexibility Function
(Estimator)

Response

—

Figure 8: Smart buildings and penalty signals.
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Figure 5: The Flexibility Function for three different buildings.
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Reference Penalties
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Figure 7: Reference scenarios of penalty signals related to ramping or peak
issues as well as the integration of wind and solar power.
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Flexibility Index
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Table 2: Flexibility Index for each of the buildings based reference penalty

signals representing wind, solar and ramp problems.

Wind (%) Solar (%) Ramp (%)
Building 1 | 36.9 10.9 5.2
Building 2 | 7.2 24.0 11.1
Building 3 | 17.9 35.6 67.5
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DTU

Center Denmark, Living Labs, Partnerships

International

- i
UNILAB consortium
-
Cooperating labs
Cardiff University V.v'"d Uni-Lab.dk
turbine test
center
Danmarks Tekniske Universitet (DTU), Denmark NREL (US)
Royal Institute of Technology (KTH), Sweden CESI (UK)
German Technical and Scientific Association for Gas
= ZEN (NORWAY)
and Water (DVGW), Germany
Berkeley (US)
Imperial College, United Kingdom
Tianjing University, P.R. China L1: CENTER g Argonne (US)
DENMARK
TNO - Netherlands KIER (KOREA)
Toshiba Research Laboratory (TRL), UK ESIPP (IRELAND
Tsinghua University - P.R. of China L4: Novasol
Summer Houses PSA (SPAIN)
Katholieke Universiteit Leuven (KUL), Belgium
KUBIK (SPAIN)

Malardalen University, Sweden

University of Pisa (UP), Italy e —
| GG " iEsi )

{1EA ANNEX 74 S E0 ANNEX 71 JIo EA ANNEX 67

Strategic International Platforms & Communities
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Summary

i

® We need more focus on data-driven technologies for energy efficiency and
flexibility - simply by using frequent meter data

o Procedures for data intelligent control of power load using the flexibility are
also suggested

@ The controllers can provide

Energy Efficiency

Cost Minimization

Emission Efficiency

Peak Shaving

Smart Grid demand (like ancillary services needs, ... )

X % ¥ X %

o We have demonstrated a large potential in Demand Response. Automatic
solutions, and end-user focus are important

@ We see large problems with the tax and tariff structures in many countries (eg.
Denmark; we are working on a new design of taxes and tariffs.
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