Data-driven methodologies for large-scale implementation and roll-out

Henrik Aalborg Nielsen

CITIES workshop / webinar: Data-Driven Technologies for Energy Efficiency and Flexibility. August 12, 2020, 9:00 AM - 12:00 PM CEST
Outline
Detecting house / household characteristics from measurements and weather data

- Briefly about ENFOR
- Single house / household analyses
- Deployment on massive amounts of houses / households
- Harvesting additional information by comparing with background information
- Concluding remarks
Forecasting and optimization software platform

ENFOR solution portfolio

Software platform with a number of specialized solutions:

- **WindFor** - Forecasting of wind power
- **SolarFor** – Forecasting of solar power
- **LoadFor** – Forecasting of power load/demand
- **PMON** – Statistical quality control of the production from wind and solar farms
- **HeatFor** - Forecasting of heat demand
- **HeatTO** - Optimization of district heating networks
- **MetFor**: Locally optimized weather forecasts
- **PriceFor** – Forecasting of electricity prices
- **ChargeME** – Forecasting and charge management of electric vehicles
- **HydroFor** – Forecasting of hydro power production
Concept 1: Estimate building characteristics from data

Simple model capturing main characteristics

Concept 2: Control the heating supplied to the building

Controller includes a model capturing main characteristics

Climate data for every location
- or forecast data

- ERA5-land available from Copernicus (European Union's Earth Observation Programme) Climate Data Store
- Surface data (temperatures of air and soil, wind, solar radiation, precipitation, …)
- The spatial resolution is 9 km
- The temporal resolution is hourly
- Same format as forecast data
Analysis engine

- Receives the energy consumption measurements and climate data
- Calculates / estimates energy characteristics on a per household basis
- Only the characteristics are stored together with an ID allowing the data to be linked with background information.
- Different analysis engines may supply different type of energy characteristics

<table>
<thead>
<tr>
<th>UA</th>
<th>σ_{UA}</th>
<th>gA^max</th>
<th>wA_E^max</th>
<th>wA_S^max</th>
<th>wA_W^max</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/°C</td>
<td>W/°C</td>
<td>W</td>
<td>W/°C</td>
<td>W/°C</td>
<td>W/°C</td>
<td>°C</td>
</tr>
<tr>
<td>4218598</td>
<td>211.8</td>
<td>10.4</td>
<td>597.0</td>
<td>11.0</td>
<td>3.3</td>
<td>8.9</td>
</tr>
</tbody>
</table>
How to scale up and harvest the benefit

System overview

Measurements

Controller

Analysis Engine

Synthesis (Machine Learning)

Climate data / weather forecasts

Background data interface (BBR etc.)

Reporting & user interaction

E.g. UA vs. ground floor area

E.g. distribution of UA residuals across houses

Measurements

Controller

Analysis Engine

Synthesis (Machine Learning)

Climate data / weather forecasts

Background data interface (BBR etc.)

Reporting & user interaction

E.g. UA vs. ground floor area

E.g. distribution of UA residuals across houses
Synthesis
Machine learning analysis linking houses / apartments / households to background information

- Find the best possible mapping from background information to energy consumption characteristics
- The part which cannot be explained by the mapping is the interesting houses / apartments / households, because this points towards entities with unusual good or bad energy performance
Data base

- One part of the data base contain the results from the analysis engine (example right)
- An other part of the data base contain the house / apartment / household background information
- Yet an other part of the data base contain the machine learning analysis model errors (model residuals)

<table>
<thead>
<tr>
<th></th>
<th>UA</th>
<th>σ_{UA}</th>
<th>gA_{max}^{A}</th>
<th>wA_{max}^{A}</th>
<th>wA_{max}^{E}</th>
<th>wA_{max}^{S}</th>
<th>wA_{max}^{W}</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>4218598</td>
<td>211.8</td>
<td>10.4</td>
<td>597.0</td>
<td>11.0</td>
<td>3.3</td>
<td>8.9</td>
<td>23.6</td>
<td></td>
</tr>
<tr>
<td>4218600</td>
<td>98.7</td>
<td>10.8</td>
<td>-96.2</td>
<td>23.6</td>
<td>10.1</td>
<td>13.0</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>4381449</td>
<td>228.2</td>
<td>12.6</td>
<td>1012.3</td>
<td>29.8</td>
<td>42.8</td>
<td>39.7</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>4711160</td>
<td>155.4</td>
<td>6.3</td>
<td>518.8</td>
<td>14.5</td>
<td>4.4</td>
<td>9.1</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>4711176</td>
<td>178.5</td>
<td>7.3</td>
<td>800.0</td>
<td>1.9</td>
<td>-7.6</td>
<td>8.5</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td>4836881</td>
<td>155.3</td>
<td>8.1</td>
<td>591.0</td>
<td>39.5</td>
<td>28.0</td>
<td>21.4</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>4836722</td>
<td>236.0</td>
<td>17.7</td>
<td>1578.3</td>
<td>4.3</td>
<td>3.3</td>
<td>18.9</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>4986050</td>
<td>159.6</td>
<td>10.7</td>
<td>715.7</td>
<td>10.2</td>
<td>7.5</td>
<td>7.2</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>5069887</td>
<td>144.8</td>
<td>10.4</td>
<td>87.6</td>
<td>3.7</td>
<td>1.6</td>
<td>17.3</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>5069913</td>
<td>207.8</td>
<td>9.0</td>
<td>962.5</td>
<td>3.7</td>
<td>8.6</td>
<td>10.6</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td>5107720</td>
<td>189.4</td>
<td>15.4</td>
<td>657.7</td>
<td>41.4</td>
<td>29.4</td>
<td>16.5</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>5127784</td>
<td>264.7</td>
<td>16.6</td>
<td>1364.5</td>
<td>18.4</td>
<td>-10.0</td>
<td>-20.0</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>5159799</td>
<td>204.8</td>
<td>5.5</td>
<td>614.2</td>
<td>-1.9</td>
<td>-2.9</td>
<td>3.9</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>5164474</td>
<td>173.4</td>
<td>14.3</td>
<td>68.4</td>
<td>8.2</td>
<td>8.2</td>
<td>-4.8</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>5164485</td>
<td>196.2</td>
<td>6.6</td>
<td>931.3</td>
<td>14.6</td>
<td>23.8</td>
<td>30.6</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td>5164523</td>
<td>148.3</td>
<td>8.5</td>
<td>758.1</td>
<td>-6.9</td>
<td>1.1</td>
<td>7.0</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>5168264</td>
<td>169.6</td>
<td>7.7</td>
<td>554.1</td>
<td>25.8</td>
<td>8.4</td>
<td>2.1</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>5183206</td>
<td>177.7</td>
<td>14.3</td>
<td>429.0</td>
<td>-4.3</td>
<td>-26.2</td>
<td>5.6</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>5183228</td>
<td>208.9</td>
<td>7.8</td>
<td>724.7</td>
<td>23.1</td>
<td>19.4</td>
<td>31.9</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>5183232</td>
<td>128.8</td>
<td>14.6</td>
<td>608.7</td>
<td>18.4</td>
<td>2.5</td>
<td>8.4</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>5191179</td>
<td>63.3</td>
<td>5.4</td>
<td>186.9</td>
<td>0.3</td>
<td>-1.1</td>
<td>0.4</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>5194940</td>
<td>221.5</td>
<td>13.2</td>
<td>246.3</td>
<td>8.0</td>
<td>2.1</td>
<td>30.5</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>5194965</td>
<td>132.3</td>
<td>9.6</td>
<td>407.5</td>
<td>-7.4</td>
<td>-2.4</td>
<td>7.3</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>5197381</td>
<td>182.3</td>
<td>13.9</td>
<td>1088.8</td>
<td>31.6</td>
<td>19.7</td>
<td>23.5</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>5223030</td>
<td>206.2</td>
<td>17.8</td>
<td>841.3</td>
<td>6.3</td>
<td>-42.1</td>
<td>-8.7</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>5223036</td>
<td>171.4</td>
<td>15.2</td>
<td>522.3</td>
<td>2.8</td>
<td>-6.5</td>
<td>12.7</td>
<td>22.7</td>
<td></td>
</tr>
</tbody>
</table>
Concluding remarks

System characteristics

• Modular design where individual components can be replaced / updated

• Analysis engine can run the analyses for the individual households in parallel and can therefore easily be scaled

• The machine learning based synthesis works only on KPI’s and background information and can therefore handle millions of households with standard technologies. Big data technologies can be applied if required

• Reporting select houses / households with unusual model residuals

• Via user interaction it will be possible to gather additional information (see aforementioned DYNASTEE paper).
Thank you for your attention!

Questions:
Henrik Aalborg Nielsen
Director of Analysis and Modelling
ENFOR A/S
han@enfor.dk
+45 2777 2780