

Using Models and Control for Balancing the Fluctuating Wind and Solar Power

WP3 Flexibility Meeting

Henrik Madsen, Olivier Corradi, Lars Henrik Hansen, Klaus Hilger

in 200 hours (West DK)

in more than 1,000 hours

Concept

Indirect control of the aggregated consumption

- **1. Collect** data from experiments and simulations
- 2. Identify the consumption response to price using only external variables
- **3. Control** the aggregated consumption by sending out a price signal

Price responsivity

Flexibility is activated by adjusting the temperature reference (setpoint)

- **Standardized price** is the % of change from a price reference, computed as a mean of past prices with exponentially decaying weights.
- Occupancy mode contains a price sensitivity with its related comfort boundaries. 3 different modes of the household are identified (work, home, night)

Step 1: Collect data

Two data sources

Olympic Pensinsula project

- 27 houses during one year
- Flexible appliances: HVAC, cloth dryers and water boilers
- 5-min prices, 15-min consumption
- Objective: limit max consumption

Simulation framework

- Modular design
- Runge-Kutta solver (diff. equations)
- Scalable (linear computation time)

7

- Variable sampling rate
- Open source (?)

Olympic Peninsula project

- Price-responsive and control group available for comparison
- Access to aggregated variables (mean, min, max and variance)
- Prices are the result of intersecting demand/supply curves in a shadow market
- Main flexibility source is heating/cooling

Simulation framework

- Occupancy modes are extracted from the Olympic Peninsula project
- Building and appliance parameters are randomized based on public statistics

Aggregation (over 20 houses)

Simulated data (sampling time: 5 min)

Step 2: Identify price response

Instant response

- The price response saturates for extreme prices
- The impact of a price change varies over one day

Step response

Model inputs: price, minute of day, outside temperature/dewpoint, sun irrandiance

Simulated

Olympic Peninsula

Step response

Dependency on season

Olympic Peninsula

Step 3: Control by price

Meibom, P., Baggesen, K.B., Madsen, H., Winther, D.: Energy Comes together in Denmark: *The Key to a Future Fossil-Free Danish Power System*, IEEE Power & Energy Magazine, 11, 46-55, 2013

Madsen, H., Parvizi, J., Halvgaard, R., Sokoler, L.E., Jørgensen, J.B., Hansen, L.H., Baggesen, K.B.: *Control of Electricity Loads in Future Electric Energy Systems*, in Handbook of Clean Energy Systems, Wiley, 2015.

Adaptive control setup

As the system changes during time

$$\min_{p_{t,1},\ldots,p_{t,k}} \mathbb{E}\left\{\sum_{k=1}^{K} w_{t,k} \left\| \hat{C}_{t,k}\left(p_{t,1},\ldots,p_{t,k},\mathcal{F}_{t}\right) - C_{t,k}^{*} \right\|^{2} \left| \mathcal{F}_{t} \right\}\right\}$$

Control performance

With a price penality avoiding its divergence

- Considerable reduction in max consumption
- Mean daily consumption shift

Advantages & Further work

Advantages

- One-way communication is enough
- Increased value for the consumer
- Generalisable to many appliances
- Can be used to manage grid congestion (even locally)

Further work

- Test controller on variable reference (e.g. wind production)
- Extend to non-linear price response models
- Incorporate uncertainty into the controller

Electricity price challenge

Wednesday 28 January 2009, 15:00

