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The electricity supply service
Penetration of RES
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Challenges introduced by RES 

The generation from RES  
cannot be planned in the same 
way as conventional power plants.

The generation can follow a 
non-linear trend.

Different dynamics 
can occur in  
space and time.

Dynamics

Stochasticity

The electricity supply service

Non-linearity

Adding the RES to the generation portfolio affects the quality of service and power 
system operation because of:
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Consequences for the AS

This is particularly affecting the provision of the ancillary services:

Congestion management
Frequency management

Balancing
Voltage management

Congestion management

Transmission

Distribution

The electricity supply service
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The electricity supply service

Flexible resources

Exploiting the energy flexibility

Flexible loads, storage and 
generation are able to 
adapt their behaviour 
according to the necessity 
of the grid.

They need to be coordinated 
in a fast and efficient manner 
in order to be valuable.

The electricity supply service
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Market-based operation
When energy flexibility resources are 
coordinated through market, this includes:

Aggregation 
of DERs

II

Formulation of bids to 
submit to the market. 

III.

Two-way communication approaches are 
by nature slow and non-scalable.  

Also, nowadays market mainly deals with 
bids that are is static, linear and 
deterministic, omitting a large  percentage 
of flexibility potential. 

Coordinating the energy flexibility
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The electricity price
Coordinating the energy flexibility

For the retail price, there is no flexibility and the prosumers do not consider the 
condition of the grid in their actions. 

Wholesale price

Retail price
t [h]

P 
[$

/k
W

h]

t [h]

P 
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/M
W

h]

The wholesale electricity price is 
flexible and changes sub- hourly.

The retail electricity price is fixed 
by the utility. 

It is fundamental to reconsider the formulation of the retail electricity price to 
exploit the price responsiveness of the flexible energy resources. 
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AS4.0: Idea
Coordinating flexible resources

What if system operators could formulate real-time varying prices according to the 
flexibility needed and exploit indirect controls?
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flexibility needed and exploit indirect controls?
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2.2.2. Indirect Control

The IC consists of one-way communication from the aggregator to the DERs where the
price is used to influence the consumption patterns at the end-user level. It does not require
any feedback since it operates in an open-loop scheme. The control problem leads to a
price signal which is based on the estimations of the aggregated response. Such estimations
are derived from models that are created based on historical data. The aggregator then
broadcasts the price signal to the participants. In this strategy, it is fundamental to properly
describe the relationship between price and electricity consumption. The mathematical
formulation of the problem [23] is given in Eq. 6:

min
p

E[
NX

k=0

wj,k||ẑk � zref,k||+ µ||pk � pref,k||]

s.t. ẑk+1 = f(pk)

(6)

where N is the length of the regulation horizon; µ is the penalization factor related to the
deviation from the reference in price; wj,k is the penalization factor related to the deviation
from the reference in load. A schematic diagram of the IC method is shown in Fig. 7. In
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ẑ +

…

y1

Aggregated Loads
zref

Pref
y2

y j

u1 DER 1Adv.
Controller

Adv.
Controller

Adv.
Controller

DER J

DER 2
u2

u j

p

z

Figure 7: Conceptual block diagram for IC scheme

the Sub-Aggregator, the Estimator uses the aggregated measurements z and the received
forecast of the disturbances d to estimate the power consumption ẑ. This is submitted to the
Regulator that minimizes the deviation between the given power consumption profile zref
and the given real-time price pref . This is done by manipulating the control moves p. The
price signal p is therefore sent to the Advanced Controllers of each Aggregated Load that
run an optimization problem and provide independent control signals to the DERs. Finally,
the output signal is provided by each DER and their sum is sent to the estimator for a
further step. CB approach is implemented in several projects over the last decade which the
most prominent ones are CITIES [24] (a Danish Research project, 2014-2020) and SmartNet
[25] (an EU project, 2016- 2019), results of which are reported in [23, 15, 22, 26, 27]. The
adoption of the CB approach using IC method provides several advantages, as listed below:

• Suitable for Real-World Applications: As opposed to the linear and slow opera-
tion of the TE framework, the CB method turns the power system operation problem
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Figure 5: Correlation between Price and Consumption from the North West Project Data [12] on March 23,
2013

directly formulated into the design of the problem, exploiting the full flexibility of the DERs.
Also, adding predictions in the controller improve the control performance. A mathematical
formulation of MPC is provided in Eq. 1 [15]:

min
x,u

E[
NX

k=0

JX

j=1

�j(xj,k, uj,k)]

s.t. xk+1 = Axk +Buk + Edk,

yk = Cxk,

ymin
k  yk  ymax

k ,

umin
k  uk  umax

k

(1)

where k = 0, 1, ...N is the prediction horizon; x is the state; d is the disturbance (e.g., out-
door temperature); y is the output of the system (e.g., temperature in a room); (A,B,C,E)
are a discrete time state space model [15]; u is the control input (e.g., electrical power).
When dealing with independently actuated system’s networks, local DER models can be
aggregated as a set of dynamically decoupled systems where j = 1, 2, ..., J DER models are
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AS4.0: Structure
Coordinating flexible resources

ASO MO

TSO DSO

HEMS HEMS HEMSEMS EMS

Communication link 
System operators 

Additional services 

Deviation minimisation

2.2.2. Indirect Control

The IC consists of one-way communication from the aggregator to the DERs where the
price is used to influence the consumption patterns at the end-user level. It does not require
any feedback since it operates in an open-loop scheme. The control problem leads to a
price signal which is based on the estimations of the aggregated response. Such estimations
are derived from models that are created based on historical data. The aggregator then
broadcasts the price signal to the participants. In this strategy, it is fundamental to properly
describe the relationship between price and electricity consumption. The mathematical
formulation of the problem [23] is given in Eq. 6:
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the Sub-Aggregator, the Estimator uses the aggregated measurements z and the received
forecast of the disturbances d to estimate the power consumption ẑ. This is submitted to the
Regulator that minimizes the deviation between the given power consumption profile zref
and the given real-time price pref . This is done by manipulating the control moves p. The
price signal p is therefore sent to the Advanced Controllers of each Aggregated Load that
run an optimization problem and provide independent control signals to the DERs. Finally,
the output signal is provided by each DER and their sum is sent to the estimator for a
further step. CB approach is implemented in several projects over the last decade which the
most prominent ones are CITIES [24] (a Danish Research project, 2014-2020) and SmartNet
[25] (an EU project, 2016- 2019), results of which are reported in [23, 15, 22, 26, 27]. The
adoption of the CB approach using IC method provides several advantages, as listed below:

• Suitable for Real-World Applications: As opposed to the linear and slow opera-
tion of the TE framework, the CB method turns the power system operation problem
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any feedback since it operates in an open-loop scheme. The control problem leads to a
price signal which is based on the estimations of the aggregated response. Such estimations
are derived from models that are created based on historical data. The aggregator then
broadcasts the price signal to the participants. In this strategy, it is fundamental to properly
describe the relationship between price and electricity consumption. The mathematical
formulation of the problem [23] is given in Eq. 6:

min
p

E[
NX

k=0

wj,k||ẑk � zref,k||+ µ||pk � pref,k||]

s.t. ẑk+1 = f(pk)

(6)

where N is the length of the regulation horizon; µ is the penalization factor related to the
deviation from the reference in price; wj,k is the penalization factor related to the deviation
from the reference in load. A schematic diagram of the IC method is shown in Fig. 7. In
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Figure 7: Conceptual block diagram for IC scheme

the Sub-Aggregator, the Estimator uses the aggregated measurements z and the received
forecast of the disturbances d to estimate the power consumption ẑ. This is submitted to the
Regulator that minimizes the deviation between the given power consumption profile zref
and the given real-time price pref . This is done by manipulating the control moves p. The
price signal p is therefore sent to the Advanced Controllers of each Aggregated Load that
run an optimization problem and provide independent control signals to the DERs. Finally,
the output signal is provided by each DER and their sum is sent to the estimator for a
further step. CB approach is implemented in several projects over the last decade which the
most prominent ones are CITIES [24] (a Danish Research project, 2014-2020) and SmartNet
[25] (an EU project, 2016- 2019), results of which are reported in [23, 15, 22, 26, 27]. The
adoption of the CB approach using IC method provides several advantages, as listed below:

• Suitable for Real-World Applications: As opposed to the linear and slow opera-
tion of the TE framework, the CB method turns the power system operation problem
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directly formulated into the design of the problem, exploiting the full flexibility of the DERs.
Also, adding predictions in the controller improve the control performance. A mathematical
formulation of MPC is provided in Eq. 1 [15]:

min
x,u

E[
NX

k=0

JX

j=1

�j(xj,k, uj,k)]

s.t. xk+1 = Axk +Buk + Edk,

yk = Cxk,

ymin
k  yk  ymax

k ,

umin
k  uk  umax

k

(1)

where k = 0, 1, ...N is the prediction horizon; x is the state; d is the disturbance (e.g., out-
door temperature); y is the output of the system (e.g., temperature in a room); (A,B,C,E)
are a discrete time state space model [15]; u is the control input (e.g., electrical power).
When dealing with independently actuated system’s networks, local DER models can be
aggregated as a set of dynamically decoupled systems where j = 1, 2, ..., J DER models are
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We simulate the model for 5 
minutes.  
The code is implemented in 
GAMS and Matlab.
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We present AS4.0, a control based-approach to solve the ancillary services 
problem in smart grids.

Such methodology is able to solve all the problems in one set, taking into account 
stochasticity, non linearity and dynamics.  

It is able to exploit the potential of flexible resources at the prosumers’ level of 
any size. Also, being based on indirect controls, it is fast and fully automated at 
different levels.

Conclusions
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