

Seasonal Storage Solutions

Niels From, PlanEnergi

PlanEnergi

- Consultants
- 30 years with RE
- 30 employees
- Offices in
 - Skørping
 - Aarhus
 - Copenhagen

- Distict heating
 - Solar thermal
 - Seasonal storages
 - Heat pumps
 - a.m.
- Energy planning
- Biogas
- Wind turbines

www.planenergi.dk

Seasonal storage references

SUNSTORE 3 in Dronninglund, DK, 2014, 60 000 m³

Boreholes in Brædstrup, DK, 2012, pilot

SUNSTORE 4 in Marstal, DK, 2012, 75 000 m³

Agenda

- Types of Thermal Energy Storages (TES)
- Feasibility of SDH + short term storage
- Feasibility of SDH + long term storage
- Optimal collector area and storage
- Summary

Model of Brædstrup in Legoland

TTES – Steel tank BTES – Borehole storage

Types of Thermal Energy Storages

PTES – Pit heat storage ATES – Aquifer storage

SDH without storage

SDH with short term storage

SDH with short term storage

- Technology: Steel tank (TTES)
- $\Delta T \approx 90^{\circ}C 40^{\circ}C = 50 \text{ K} \rightarrow 1 \text{ MWh} \approx 18 \text{ m}^3$
- Investment = $135 \in /m^3$
- **Example** (without heat losses)
 - 5 000 m³ ≈ 280 MWh ≈ 675 000 €
 - 280 MWh * 20 cycles/year * 20 years = 112 000 MWh
 - Storage costs = 675 000 € / 112 000 MWh = 6 €/MWh

SDH with short term storage

SDH with long term storage

SDH with long term storage

- Technology: Water pit (PTES)
- $\Delta T \approx 85^{\circ}C 45^{\circ}C = 40 \text{ K} \rightarrow 1 \text{ MWh} \approx 22 \text{ m}^3$
- Investment = 1.5 M€ + 15 €/m³
- **Example** (without heat losses)
 - 133 000 m³ ≈ 6 000 MWh ≈ 3.5 M€ ^a
 - 6 000 MWh * 1 cycle/year * 20 years = 120 000 MWh
 - <u>Storage costs</u> = 3.5 M€ / 120 000 MWh = <u>29 €/MWh</u> ^b
 - a) 5 times cheaper/m³ compared to tank storages
 - b) 5 times more expensive/MWh compared to short term

Optimal collector area and storage

Optimal collector area and storage

- Example: Medium sized Danish DH plant
 - 43 100 MWh/year
- Reference production = Gas boilers (50 €/MWh)
- Supplementary production = SDH
 - Without storage
 - Or with 5 000 m³ steel tank (0.7 M€)
 - Or with 200 000 m³ pit heat storage (4.5 M€)
- SDH investment = 0.2 M \in + 180 \in /m²
- Annual capital costs = 6% of investment

Net SDH production vs. Collector area

SDH heat price vs. RE share

Total heat price vs. RE share

Summary

- SDH with short term storages is feasible
 - Production price < 30 €/MWh
 - RE share 20-30%
- SDH with seasonal storages can be feasible
 - Production price < 40 €/MWh
 - RE share 40-60%
- Seasonal storages must be cheap (< 30 €/m³)

Thank you for your attention

nf@planenergi.dk M +45 2064 6084

<u>www.planenergi.dk</u> T +45 9682 0400