

Methods and Processes for Hydro-thermal Scheduling

Prof. Olav Bjarte Fosso Dept of Electrical Power Engineering Norwegian University of Science and Technology (NTNU)

Hydro Power's role in an Integrated Energy System?

Hydro Power in Norway

- Electricity: ~ 100% hydro power
- Largest in Europe, nr 6 in the world
- 30% of hydro power cap. In European Union (50 % of storage)
- Installed capacity : ~ 29000 MW
- Generation average,: ~ 125 TWh
- Consumption: ~ 124 TWh
- Average inflow +- 20 %

Real-world problems characterized by

- Large physical models (Geographical and time horizon)
- Non-linear and non-convex with many local optimums
 - Final solution may depend on the starting point
 - Global optimal solution never guaranteed
- Binary variables complicates the solution process and may in some parts of the complete problem be important
- User-experience and "non-mathematical" constraints (rulebased and state dependent) may be important
- Hydro scheduling is no exception regarding these problems

Challenges in hydro scheduling

- Cascaded reservoir systems with different storage capacity couples the decisions between the generation plants
- The storage capacity and variable inflow couples the decisons over time
 - Inflow range in Norwegian system: 95 140 TWh (Average load 125 TWh)
 - Significant storage capacity requires long planning horizons (Typical up to 5 years)
 - Other system characteristics dictates the time resolution
- The relative size of the hydro system compared to the thermal system call for different co-ordination principles (Peak shaving – similar size – hydro-dominated)

Large scale stochastic dynamic optimization

- Multi state
 - Typical more than 1000 different storages in an fundamental market model
 - Very varying storage size (from about three years to hours)
- Stochastic multidimensional
 - Inflow, wind, radiation
 - Correlated in time an space
 - Historical observations
 - Short-term forecast, snow pack information
 - Exogenous prices
- Multi stage
 - Weekly (split into intraweek time step)
 - Several year long planning horizon
- Transmission constrained
 - Several thousand nodes

Scheduling Hierarchy

(Norway – present practice)

Long term scheduling (1-5 years) Stochastic models for optimazation and simulation

> Reservoir levels Marginal water values

Seasonal scheduling (3-18 months) Multi-scenario Deterministic optimization models

> Marginal water values Reservoir boundaries

Short term scheduling (1-2 weeks) Deterministic optimization models

Plans

Detailed simulation (1 -12 weeks) Verification of plans with non-linear simulation

Methods in use

- SDP (Long-term)
 - Aggregated
 - Stochastic
- SDDP (Long / Mid-term)
 - Detailed
 - Stochastic
- Scenario-based (Mid-term)
 - Deterministic
- Deterministic(Short-term)
 - LP
 - MIP
 - DP
 - Lagrange relaxation

Longer-term scheduling

Simulation of markets with storages and weather uncertainty

Courtesy: Birger Mo, SINTEF

Marginal water values calculated for all points over the time horizon

□ NTNU

Illustration of water values

Application example – Integration of balancing markets

Fundamental model	Detailed water course description About 300 thermal power plants Transmission corridors (NTC)		
Northern Europe	Denmark, Finland, Norway, Sweden Germany, Netherlands, Belgium		$\begin{array}{c} 3 \\ 9 \\ 16 \\ 14 \\ 7 \\ 5 \\ 3 \\ 10 \\ 14 \\ 7 \\ 5 \\ 3 \\ 10 \\ 13 \\ 10 \\ 13 \\ 10 \\ 10 \\ 10 $
System scenarios	2010 – current state of the system 2020 – a future state of the system		
Several climatic years	Hydrology (Inflow) Temperature Wind speed		

Coupling between models and planning levels

Coupling between planning levels

- Different models at different planning levels complicates the coupling and information flow
- The next level of analysis does not necessarily get input data of sufficient precision
- Aggregation / disaggregation challenges
- Coupling principles:
 - Price coupling (individual / aggregated)
 - Volume coupling

Aggregation / disaggregation challenges

Coupling principle Incremental water values

Puts certain requirements on the methods used in both periods

Short-term scheduling

Network formulation – short-term

20 **D** NTNU

THANKS FOR YOUR ATTENTION

More information: http://www.ntnu.edu/energy

Linear programming

- Linear models are fundamental for most the modeling and simulation
- The experience shows that most of the physical problems can be solved by using linear models as building blocks
- Non-linearities can be handles by:
 - Piece-wise linear segments
 - Iteration for successive refinement
 - Integer variable and to check combinations
- Algorithms are available to solve very large problems fast

Linearization

Short-term hydro power optimization

NTNU

Norway - an energy nation.....

3 generations of energy development: Hydro Power, Petroleum, Renewables

DNTNU

Resource – demand profiles

GWh/week

NTNU

Complementarity: Wind Power / Hydro vs. Demand

Norwegian hydropower for balancing

- The reservoirs are natural lakes
 - Multi-year reservoirs
 - Largest lake stores 8 TWh
 - Total 84 TWh reservior capacity
- Balancing capacity estimates 2030
 - 29 GW installed at present
 - + 10 GW with larger tunnels and generators
 - + 20 GW pumped storage
 - 30 GW total new capacity
 - Within todays environmental limits
 - Requires more transmission capacity

Courtesy: Birger Mo / CEDREN

Price difference between Norway and Germany – average week

