

arameter	Value	Unit
max	6.1	MW
min	2.7	MW
max	8.7	MW
eat generation efficiency, κ_{BS}	0.77	-
ariable O&M, C^a	3.9	€/MWh
iomass storage capacity, SC^{max}	35	MWh
Iax heat-to-power ratio, δ	1.8	-
raction power reduction, γ	0.18	-
Iax heat storage capacity, A^{max}	70	MWh
In heat storage capacity, A^{min}	0	MWh
In bio storage capacity, SC^{min}	0	\mathbf{t}
fax bio storage capacity, SC^{max}	1295	\mathbf{t}
nitially stored biomass, SL^{init}	600	\mathbf{t}

Flexible Mid-Term Biomass Contract Planning for CHP Plants

Ignacio Blanco¹, Dominik Franjo Dominkovic² and collaborators ¹Technical University of Denmark, DTU Compute – Department of Applied Mathematics and Computer Science ²Technical University of Denmark, DTU Energy – Department of Energy Conversion and Storage

> {igbl¹,dodo²}@dtu.dk CITIES – Centre for IT-Intelligent Energy Systems in Cities

METHODOLOGY

tudy	y results.	
€]	Cost [€]	Biomass Contract $\left[\frac{tones}{week}\right]$
	705389	221.415
	645224	204.599
	633172	172.156
	705866	221.916
	681679	212.443
	650724	209.481
	718380	221.841
	687226	212.415
	671436	206.522

t	α_1	α_2	Profit [€]
	0	0	369150
	0.99	0	343533
	0.99	0.99	144989
	0.99	0	128171

For this model the CHP plant operator needs to make an estimate of its heat and power production in order to be able to predict the optimal quantity of biomass contracted. Flexible solutions are given by the introduction of two different CVaR in the objective function. CVaR1 for the expectation of electricity production revenues and CVaR2 for the expectation of heat production costs.

First Stage:

The CHP producer has to decide the contract that defines an amount of biomass to be delivered.

Second Stage:

The CHP producer has to submit its bid in the day-ahead market.

Third Stage:

Is the real time operation. The heat demand has to be fulfilled as well as the power production bid.

Here and now decisions: [^]

Biomass delivered periodically in tones.

Wait and see decisions: $\Lambda(s)$

Power production, heat production, heat storage level, biomass storage level, biomass used, biomass sold and purchase in the last minute.

Objective Function:

$$\begin{array}{l} \underset{\Upsilon,\Lambda(s)}{\operatorname{maximize}} & -C^{BC}B\sum_{d\in D}\sum_{h\in H}\tau_{d,h} \\ & +\zeta_1 - \frac{1}{1-\alpha_1}\mathbb{E}\left[\eta_1(s)\right] \xrightarrow{} \operatorname{CVaR 1: H}_{\operatorname{production}} \\ & +\zeta_2 - \frac{1}{1-\alpha_2}\mathbb{E}\left[\eta_2(s)\right] \xrightarrow{} \operatorname{CVaR 2: H}_{\operatorname{production}} \end{array}$$

Non-anticipativity constraints:

 $p_{d,h}(s) = p_{d,h}(s')$

The power production bid in one node of stage 2 has to be applied in stage 3 for all the branches coming from that node.

RESULTS

Results displayed in Table 4 provide 9 different types of contracts based on the quantity of biomass distributed weekly.

The performance of the 9 different contracts is studied using probability density functions for different realization of the uncertainties:

- The 9 scenarios depicted in Table 3. (Table 5, Figure 1)
- 100 scenarios applying a random distribution for the heat demand and a normal distribution for the electricity prices. (Table 6, Figure 2)

Conclusion:

CHP producer profits are significantly more affected by the risk level assumed in the electricity prices rather than heat demand. Being conservative in the power profits expectations leads to bad contracting decisions because the amount of biomass contracted is employed to cover the heat demand and not to obtain profits from bidding in the day-ahead market. As a consequence, if an unexpected realization of the electricity prices performs, the producer limits its profits to the amount of biomass available.

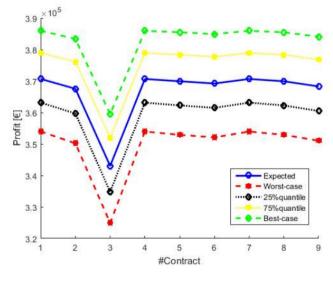


Figure 2: Performance of the different contracts according the expected, worst-case, best-case, first quartile and third quartile of the uncertainties realization when 100 scenarios are studied.

Table 6: Best/Worst performance of the biomass contracts in terms of expected and worst-case realization of the uncertainties.

	Contract	α_1	α_2	Profit [€]
Best Expected	1	0	0	370655
Best Worst-case	1	0	0	353955
Best Best-case	1	0	0	385965
Best 75% Quantile	1	0	0	378948
Best 25% Quantile	1	0	0	363143
Worst Expected	3	0.99	0	343019
Worst Worst-case	3	0.99	0	324915
Worst Best-case	3	0.99	0	359449
Worst 75% Quantile	3	0.99	0	352021
Worst 25% Quantile	3	0.99	0	334805

