

Policy Uncertainty and Real Options in Switching of Peak Generators

Stein-Erik Fleten, Marius Johansen, Alois Pichler, Carl J Ullrich

Background: real options

- Profitability in \$/unit capacity
- Usual to assume MR or GBM; we use a nonparametric approach

Structural estimation of real options

- Estimate irreversible switching costs associated with economic state changes
- Data need
 - Observed state changes over many facilities and over time
 - A time series of a profitability indicator
 - Nonparametric dynamics
- Builds on Che-Lin Su and Kenneth Judd (2012)
 - Constrained optimization approaches to estimation of structural models

- How does profitability indicators, policy uncertainty and strategic interaction affect thermal peak generators decisions to switch between operating-ready and standby states
- Brennan and Schwartz (1985)
- Status changes
 - Shutdown
 - Startup

On empirical verification

Why might these estimates of firms' responses to changes in expected volatility accord so well with theory? Given the small size of the majority of these firms, it seems unlikely that they are formally solving Bellman equations. However, they may have developed decision heuristics that roughly mimic an optimal decision-making process. Moreover, the firms have a strong financial incentive to get their decision-making at least approximately right (Kellogg, 2010, p. 30).

6

The real options problem

- Time index, k = 1, 2, ... years
- X_k profit indicator
- s_k , u_k in {OP, SB, RE} operating states and action space
- g(x, s, u) current year profit including maint + switching costs

$$V(x,s) := \max_{s_k \triangleleft \sigma(X_k)} \mathbb{E}\left(\sum_{k=0}^{\infty} \beta^k g(X_k, s_k; s_{k+1}) \middle| X_0 = x\right)$$

 $V(x,s) = \max_{u \in S} g(x,s; u) + \beta \cdot \mathbb{E} (V(X_{k+1}, u) | X_k = x)$

The real options problem

- Heterogeneity: $g(x, s, u) + \varepsilon_u$
- There is a random shock, observed by the decision maker, but not by the analyst

• The value function becomes $V_{\varepsilon}(x,s) = \max_{u \in S} g(x,s; u) + \varepsilon(u) + \beta \cdot \mathbb{E} \left(\int V_{\varepsilon}(X_1, u) \mathscr{E}(d\varepsilon | X_1) \middle| X_0 = x \right)$

• Define

$$v(x,s) := \mathbb{E}\left(\int V_{\varepsilon}(X_1,s) \mathscr{E}(\mathrm{d}\varepsilon) \middle| X_0 = x\right)$$

• Then,

$$v(x,s) = \mathbb{E}\left(\int \max_{u \in S} g(X_1,s;u) + \varepsilon(u) + \beta \cdot v(X_1,u) \mathscr{E}(\mathrm{d}\varepsilon) | X_0 = x\right)$$

• Conforming with the structural estimation literature, this shock is Gumbel distributed, independent of the profit indicator, and is additively separable

The Gumbel variable

- If we have independent and identically distributed random variables ε_i, what can we say about
- $M_n := \max_{i = 1..n} \epsilon_i$?
- It will be extreme value distributed!
 - Assuming M_n exponential tail -> Gumbel

Choice probability

- Analyst' model of decision makers choices (later to be compared to data; maximum likelihood)
- If $\varepsilon_i \sim \text{Gumbel}(\mu_i, b)$, and with $\mu := b \cdot \log\left(\sum_{i=1}^n \exp\left(\frac{\mu_i + c_i}{b}\right)\right)$ then

$$P\left(\max_{i=1,\dots,n}\varepsilon_{i}+c_{i}\leq z\right)=\exp\left(-e^{-\frac{z-\mu}{b}-\gamma}\right)\sim Gumbel\left(\mu,b\right)$$

• It follows that the choice probability is

$$P\left(\varepsilon_1 + c_1 = \max_{i \in \{1, 2, \dots, n\}} \varepsilon_i + c_i\right) = \frac{\exp\left(\frac{c_1 + \mu_1}{b}\right)}{\exp\left(\frac{c_1 + \mu_1}{b}\right) + \dots + \exp\left(\frac{c_n + \mu_n}{b}\right)}$$

Value function

• Recall value function before $\varepsilon(u)$ was assumed Gumbel

$$v(x,s) = \mathbb{E}\left(\int \max_{u \in S} g(X_1,s;u) + \varepsilon(u) + \beta \cdot v(X_1,u) \mathscr{E}(\mathrm{d}\varepsilon) \middle| X_0 = x\right)$$

• With Gumbel assumption

$$v(x,s) = \mathbb{E}\left(\left. \frac{b \cdot \log\left(\sum_{u \in S} \exp\left(\frac{g(X_1,s; u) + \beta \cdot v(X_1, u)}{b}\right)\right)\right| X_0 = x\right)$$

Structural estimation recap

- An individual solves an optimization problem
- Analyst observes states and decisions
- Want to estimate unobserved parameters that are consistent with optimality conditions

Structural estimation problem

 $\begin{array}{ll} \text{maximize} & \frac{1}{N} \sum_{i=1}^{N} \log P_{v_g} \left(u_i \, | \, X_i, s_i \right) \\ \text{subject to} & v_g = t_g \left(v_g \right), \\ & g \in \mathscr{G}, \end{array}$

where (the probability of choice!)

$$P_{v}(u|x,s) = \frac{\exp\left(\frac{g(x,s;u) + \beta v(x,u)}{b}\right)}{\sum_{u' \in S} \exp\left(\frac{g(x,s;u') + \beta v(x,u')}{b}\right)}$$

with the contraction

$$(t_{g}v)(x,s) = \mathbb{E}\left(\left| b \cdot \log\left(\sum_{u \in S} \exp\left(\frac{g(X_{1},s;u) + \beta \cdot v(X_{1},u)}{b}\right)\right) \right| X_{0} = x\right)$$

Structural estimation problem

- Maximize log likelihood
 - Likelihood of observing plant status given state variables (profitability in \$7 kW, spark spread standard deviation, reserve margin, inverse competitiveness, regulatory uncertainty) and plant status last year
- Subject to
 - Decision makers behave according to our real options switching specification (next slide)
 - Forming expectations according to how the profitability indicator have been "transitioning" in the past (k-means clustering)
- Output
 - Value functions: value for different profitability levels given OP or SB state
 - Switching and maintenance cost parameters

Current year profit function

$$g(X,s;u) = \begin{cases} P - M_{\text{OP}} & \text{if } s = \text{operating and } u = \text{operating,} \\ P/2 - M_{\text{OP}}/2 - M_{\text{SB}}/2 - K_{\text{SD}}() \text{if } s = \text{operating and } u = \text{standby,} \\ P/2 - M_{\text{OP}}/2 - M_{\text{SB}}/2 - K_{\text{SU}}() \text{if } s = \text{standby and } u = \text{operating,} \\ -M_{\text{SB}} & \text{if } s = \text{standby and } u = \text{standby,} \\ -M_{\text{SB}}/2 - K_{\text{RE}}() & \text{if } s = \text{standby and } u = \text{retired,} \\ & \text{else.} \end{cases}$$

Parameters to be estimated:

$$\begin{split} \mathsf{M}_{\mathsf{OP}} &= \text{maint. cost in OP state} \\ \mathsf{M}_{\mathsf{SB}} &= \text{maint. cost in OP state} \\ \mathsf{K}_{\mathsf{SD}} &= \text{shutdown cost} &= \gamma_0 + \gamma^\mathsf{T}\mathsf{X} \\ \mathsf{K}_{\mathsf{SU}} &= \text{start up cost} &= \lambda_0 + \lambda^\mathsf{T}\mathsf{X} \\ \mathsf{K}_{\mathsf{RE}} &= \text{abandonment cost} &= \eta_0 + \eta^\mathsf{T}\mathsf{X} \end{split}$$

Structural estimation problem

- The constraints are not yet computable
- We contribute by using a Nadaraya–Watson estimator for the transition probabilities

$$\mathbb{E}\left(\frac{b \cdot \log\left(\sum_{u \in S} \exp\left(\frac{g\left(X_{1}, s; u\right) + \beta \cdot v\left(X_{1}, u\right)}{b}\right)\right) \middle| X_{0} = x\right)}{\sum_{i=1}^{N-1} \frac{K\left(\frac{x - X_{i}}{h}\right)}{\sum_{i'=1}^{n} K\left(\frac{x - X_{i'}}{h}\right)} \cdot b \cdot \log\sum_{u \in S} \exp\frac{g\left(X_{i+1}, s; u\right) + \beta \cdot v\left(X_{i+1}, u\right)}{b}}{b}$$

 This is discretized along the x-axis and for operating modes OP and SB

f

Summary

- We have setup a nonlinear program which solves the structural estimation problem
- Next: Our case study

Application: Peak power plants

- Motivation: Regulators are concerned with mothballing and closures of conventional flexible power plants
 - Driven by penetration of renewables
 - Peak power plants are cornerstones of power systems since they provide necessary reserve flexible capacity
 - New capacity markets/incentives are being designed for conventional plant to not mothball/shut down
- Furthermore, these parameters are necessary for asset valuation
- We arrive at estimates for switching costs and maintenance costs

sity of lology

Application: Peak power plants

- Main data source: EIA Form 860
 - Required annual filing
 - Information on every generator in US
 - Includes existing and planned
- EIA = Energy Information Administration

www.eia.gov

- Sample period 2001-2011
 - EIA 860 (data source) format changes in 2001
- Focus on peaking plants (CTs)
 - Natural gas and #2 oil
 - Final sample:
 - 1,388 unique generators
 - 13,078 generator-year observations

Photo: tu.no

Status code of generator

From EIA 860

- OP operating
- SB on standby (mothballed/shutdown)
- RE retired

From EIA860 "Layout" file

"Cold Standby (Reserve): deactivated (mothballed), in long-term storage and cannot be made available for service in a short period of time, usually requires three to six months to reactivate."

Electricity Prices (\$/MWh)

- Wholesale prices for three markets
 - 1. New England (NEISO)
 - 2. Pennsylvania-NJ-Maryland (PJM)
 - 3. New York (NYISO)

Average daily peak price

Hours Ending 07:00 - 22:00

Sources: FERC; Map Resources (map).

Fuel Prices (\$/MMBtu)

- Daily spot prices
 - NY Harbor No. 2 Oil
 - Henry Hub Natural Gas

Data taken from EIA website

- http://www.eia.gov/petroleum/data.cfm
- http://www.eia.gov/naturalgas/data.cfm

Spark spread (*\$/MWh*) and profit indicator *P_i* (*\$/kW*), year *i*

$$SPRD_{pjn} = PE_n - HR_p PF_{jn} - VOM_p$$

- $PE_n = \text{day } n \text{ elec price}$
- HR_i = heat rate for plant p
- $PF_{j,n}$ = day *n* fuel price for fuel *j*
- VOM_p = variable O&M costs for plant p

Profit indicator P_i is pre-calculated as

$$P_i = \sum_{n=1}^{T_i} \max\left(SPRD_n, 0\right) * \left(\frac{16}{1000 \, kW/MW}\right)$$
 NTNU
Norwegian University of Science and Technology

- Reserve margin
- $\succ RM_{kt} = (C_{kt} D_{kt})/D_{kt}$
 - RM_{kt} reserve margin
 - C_{kt} capacity (year t, region k)
 - D_{kt} demand
- Proxy for future profitability
 - Low RM high electricity prices high future profitability
 - High RM low electricity prices low future profitability Norwegian University of Science and Technology

Spark spread volatility

SPRDSD_{it} = Stdev (SPRD_{in})

 Stdev taken over days of previous year n=1,T

\succ Plants = options

- Power plants are (a series of) call options on the spark spread
- An increase in volatility increases the option value of the plant.
 - Fewer shutdowns & abandonments.
 - More startups.

- Strength of competition
- How inefficient is this generator compared to nearby generators from competing firms
- HR = heat rate = inverse of efficiency
- > A = set of generators in the state of plant p (*HR*_A is avg)

$$C_{t,p} = \begin{cases} \frac{HR_{t,p}}{HR_A} & \text{if } |A| > 0\\ 0 & \text{else} \end{cases}$$

Low C means competitive, high C means low competitiveness

State-Level retail competition index

- 1. No activity
- 2. Investigation underway
- 3. Competition recommended
- 4. Law passed
- 5. Competition implemented

Source: EIA; State Utility Commissions

Regulatory uncertainty indicator

- REGUNCERT = 0
 - When competition index = 1, 4, 5
- REGUNCERT = 1
 - When competition index = 2, 3

Regulatory uncertainty

- Likely to reduce the probability of *any* status change.
 - Fewer shutdowns
 - Fewer startups
 - Fewer abandonments

Scatterplot of transitions of profit indicator levels from year i to year i+1

www.ntnu.no

Data summary

- An observation is a triple (X_i, s_i, u_i)
- i. the operating state of the power plant s_i in the current year,
- ii. the exogenous state X_i (5D!) during the year, and,
- iii. the decision of the manager regarding the operating state u_i of the power plant in the upcoming year.

Implementation

- Computer language: AMPL
- Solver: KNITRO 9.0
- 35 variables, 33 constraints
- Solve time 11s on MacBook Air 2GHz i7 w/8 GB memory running OS X 10.9.4

Unobserved heterogeneity

- In addition to the random shock ε_u
- Some groups of plants may have relatively high cost parameters, others lower
- Assume some of the coefficients are random with a given distribution (Train (2002))
 - Need to integrate over these r.v.
- Here random:
 - Maintenance cost in operating ready state
 - Startup costs
 - (Cost of retiring the plant, maint cost in standby, shutdown costs)

Assumptions

- Discount factor $\beta = 0.91$.
- Coefficients constrained nonnegative except K_RE.
- St.dev of estimates in parantheses. Found by nonparametric bootstrapping.

Finally: estimated coefficients

(for large firms, and γ, λ and η = 0)

E(M _{OP})	$\sigma_{M_{OP}}$	M _{SB}	K _{SD}	E(K _{SU})	σ _{K_SU}	K _{RE}	
7.14	4.14	1.50	0.0	3.8	1.78	-8.00	
(0.47)	(0.27)	(0.36)	(1.52)	(3.34)	(1.77)	(1.54)	1

Interpretation: Assuming plant managers behave according to our decision model, these are the implied costs in \$/kW.

- M_{OP} = maint. cost in OP state
- M_{SB} = maint. cost in OP state
- K_{SD} = shutdown cost
- K_{SU} = start up cost
- K_{RE} = abandonment cost (salvage value)

48

Statnett (Norwegian ISO) announcement April 2015

- 170 Mill NOK used over 5.5 years for 300 MW peak plants, 150 MW to be sold.
- 170 mill NOK/(5.5 yr * 300 MW) = 103 NOK/(yr*kW) = 13.4 USD/(yr/kW) (at 7.7 NOK/USD).
- Our 95% range: M_{OP} is [-1, 15] USD/(år/kW) ☺

-						
	Owner type	Large	Small	Large	Small	
	Period	2001-2008	2001-2008	2001-2011	2001-2011	
	Coefficient or parameter values					
Мор	constant	3.000**	4.316***	2.386***	5.782**	
Msb	constant	2.088***	0.123	0.000	0.859	
Kop->SB KSB->OP	constant	0.000	0.917	0.001	0.047	
	Regulatory uncertainty (U)	4.150	14.519	6.414	15.966**	
	Projected reserve margin (R)	-6.480**	-44.926**	23.210**	-19.902	
	Spark spread standard deviation (S)	137.708***	99.822***	104.451**	114.710***	
	Competitieness measure (C)	0.600	2.530	-1.402	1.592	
	constant	0.000	0.205	0.001	0.176	
	Regulatory uncertainty (U)	16.330***	17.907**	15.784**	14.651	
	Projected reserve margin (R)	-10.221***	20.981	-9.210	13.831	
	Spark spread standard deviation (S)	-5.839	-120.112***	-8.425	-139.506***	
	Competitieness measure (C)	-1.480**	1.593	-2.896*	-1.696	
SB->RE	constant	-10.732***	-19.221***	-30.235***	-21.648*	
	Regulatory uncertainty (U)	14.758***	18.966***	18.487***	18.413*	
	Projected reserve margin (R)	-12.447*	13.138	-7.093	13.003	
	Spark spread standard deviation (S)	213.833**	-22.904	309.075***	-45.525*	
_	Competitieness measure (C)	-0.193	-0.102	-1.692	-0.810	
	Notes: Significance codes: *** p < 0.01, ** p < 0.05, * p < 0.1					

Start-up

Shut down

Abandon

NTNU Norwegian University of Science and Technology

Results

F	Results							
	Owner type Period	Large 2001-2008	Small 2001-2008	Large 2001-2011	Small 2001-2011			
			Coefficient or parameter values					
Мор	constant	3.000**	4.316***	2.386***	5.782**			
Мsв	constant	2.088***	0.123	0.000	0.859			
Kop->SB KSB->OP	constant	0.000	0.917	0.001	0.047			
	Regulatory uncertainty (U)	4.150	14.519	6.414	15.966**			
	Projected reserve margin (R)	-6.480**	-44.926**	23.210**	-19.902			
	Spark spread standard deviation (S)	137.708***	99.822***	104.451**	114.710***			
	Competitieness measure (C)	0.600	2.530	-1.402	1.592			
	constant	0.000	0.205	0.001	0.176			
	Regulatory uncertainty (U)	16.330***	17.907**	15.784**	14.651			
	Projected reserve margin (R)	-10.221***	20.981	-9.210	13.831			
	Spark spread standard deviation (S)	-5.839	-120.112***	-8.425	-139.506***			
Ksb->re	Competitieness measure (C)	-1.480**	1.593	-2.896*	-1.696			
	constant	-10.732***	-19.221***	-30.235***	-21.648*			
	Regulatory uncertainty (U)	14.758***	18.966***	18.487***	18.413*			
	Projected reserve margin (R)	-12.447*	13.138	-7.093	13.003			
	Spark spread standard deviation (S)	213.833**	-22.904	309.075***	-45.525*			
	Competitieness measure (C)	-0.193	-0.102	-1.692	-0.810			

Notes: Significance codes: *** p < 0.01, ** p < 0.05, * p < 0.1

INSIGHTS

Regulatory uncertainty increases shut-down and abandonment costs • A real options effect

Reserve margin

 Wrong sign for startup, ok for shut-down and abandonment

Capacity payments

 Mainly affects reserve margin impact for large firms

Spark spread standard deviation

 Many unexpected signs, counter to real options theory

Inverse competitiveness

 OK for shut-down costs of large firms, otherwise not significant

Small firms less affected by profitability factors

16% share of non-utilities

Conclusions

- Real options theory is a useful lens for interpreting the power plant status data
- Regulatory uncertainty affects switchings
- Our method gives reasonable switching cost estimates
- Capacity payments: some of the profitability indicators become less important
- Large firms more responsive to profitability indicators and strategic interaction

References

- M. Brennan and E. S. Schwartz, Evaluating natural resource investments, J of Business 58, 1985
- S.-E. Fleten, E. Haugom, C. Ullrich, Keeping the lights on until the regulator makes up his mind, Working paper
- A. Gamba and M. Tesser, Structural estimation of real options, J of Economic Dynamics & Control 33, 2009
- R. Kellogg, The effect of uncertainty on investment: Evidence from Texas oil drilling. American Economic Review, 2014
- C.-Y. Lin and K. Thome. Investment in corn-ethanol plants in the Midwestern United States: An analysis using reduced-form and structural models. Working Paper, UC Davis, 2013.
- D. McFadden, Conditional logit analysis and qualitative choice behavior, 1973
- A. Moel and P. Tufano, When are real options exercised? An empirical study of mine closings, Review of Financial Studies 15, 2002
- L. Muehlenbachs. A dynamic model of cleanup: Estimating sunk costs in oil and gas production. International Economic Review, 2015
- J. Rust, Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher, Econometrica 55, 1987
- C-L Su and K. Judd, Constrained optimization approaches to estimation of structural models, Econometrica 80, 2012

f

Thank you for listening...

- Comments and questions ?
- <u>stein-erik.fleten@iot.ntnu.no</u>
- johans.mar@gmail.com
- alois.pichler@ntnu.no
- ullriccj@jmu.edu

