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Outline

• Motivation

• Capturing the consumers’ price-response in a market bid

• Defining the estimation problem

• Solving the estimation problem

• Case study: The Olympic Peninsula experiment

• Concluding remarks
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The Market Bid

The bid should capture the price-response of the aggregation of flexible
consumers

Parameters θ of the complex bid:
• Step-wise marginal utility function (ab,t )

Energy

Price

• Maximum load pick-up and drop-off limits (ru
t ,rd

t ) (similar to the ramping
limits of a conventional generating unit)

• Maximum and minimum power consumption (P t ,P t )
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The Market Bid⇔ The Price-Response Model

Total consumption: P t +
∑

b∈B xb,t

Maximize
xb,t

∑
t∈T

(∑
b∈B

ab,txb,t − pt

∑
b∈B

xb,t

)
Subject to

P t +
∑
b∈B

xb,t − P t−1 −
∑
b∈B

xb,t−1 ≤ ru
t t ∈ T−1 (1a)

P t−1 +
∑
b∈B

xb,t−1 − P t −
∑
b∈B

xb,t ≤ rd
t t ∈ T−1 (1b)

0 ≤ xb,t ≤
P t − P t

B
b ∈ B, t ∈ T (1c)
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The Market Bid⇔ The Price-Response Model

How do we determine the set of characteristic parameters θ that define the
market bid?
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The Estimation Problem

• We estimate the bid parameters θ from observational price-consumption
data

Time Price Load
t1 p1 xmeas

1
t2 p2 xmeas

2
... ... ...

• Inverse optimization: the parameters of the bid are the parameters of
an optimization problem

• We cast the inverse optimization problem as a bilevel programming
problem
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The Estimation Problem as a Bilevel Program

Upper-level problem 

Lower-level problem 

          Minimize
𝑥,𝜃

 𝑥 − 𝑥𝑚𝑚𝑚𝑚   
 

𝑠. 𝑡.   Constraints on bid parameters 
 

      Maximiz𝑒
 𝑥

 Utility(𝑎𝑏)  − Cost  
 

𝑠. 𝑡.  Power bounds 𝑃, 𝑃  
 

         Maximum pick-up rate 𝑟𝑢  
 

         Maximum drop-off rate 𝑟𝑑  
 
           
 
          
 
 

θ = {ab, ru, rd ,P,P}
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Equivalent Single-level Optimization Problem

Parameter estimation

Minimize
x,θ

∑
t∈T

wt

∣∣∣P t +
∑
b∈B

xb,t − xmeas
t

∣∣∣
subject to

ab,t ≥ ab+1,t b ∈ B, t ∈ T
KKT conditions of lower-level problem

The weight wt has a threefold purpose:

1 If the market bid is intended for a forward (e.g., day-ahead) market, then wt could
represent the cost of imbalances at time t

2 The most recent observations can be given larger weights

3 Zero weight for missing or wrong measurements
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Including Auxiliary Information (Features Z )

Time Price Load External Info.
t1 p1 xmeas

1 z1
t2 p2 xmeas

2 z2
... ... ... ...

Generalized framework for inverse
optimization:

• xmeas needs not be optimal or even
feasible for the lower-level problem

• Auxiliary information on features is
leveraged (affine dependence)

Upper-level problem 

Lower-level problem 

          Minimize
𝑥,𝜃(𝑍)

 𝑥 − 𝑥𝑚𝑚𝑚𝑚   
 

𝑠. 𝑡.    𝜃 𝑍 ∈ Ξ, ∀𝑍 
 

      Maximiz𝑒
 𝑥

 Utility (𝑎𝑏(𝑍))  − Cost  
 

𝑠. 𝑡.  Power bounds 𝑃(𝑍), 𝑃(𝑍)  
 

         Maximum pick-up rate 𝑟𝑢(𝑍)  
 

         Maximum drop-off rate 𝑟𝑑(𝑍)  
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Two-step Procedure

Step 1: Solve a linear relaxation of the estimation problem (which is an
MPEC)

Step 2: Recompute the parameters defining the utility function with the
parameters defining the constraints of the lower-level problem
fixed at the values estimated in Step 1

EnergyCon2016 April 7th , 2016 12 / 31
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L-Penalty Method

We relax the complementarity conditions [Siddiqui and Gabriel, 2013]

Minimize
x,λ

cx

Ax− b ≥ 0 ⊥ λ ≥ 0

=⇒
Minimize

x,λ
cx+ L(Ax− b+ λ)

Ax− b ≥ 0

λ ≥ 0

• Parameter L penalizes violations of the complementarity constraints
• Optimality is not guaranteed - practical usefulness proved
• Model validation to tune L

EnergyCon2016 April 7th , 2016 13 / 31
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Case Study

• Data of price-responsive households from Olympic Peninsula project
from May 2006 to March 2007

• Decisions made by the home-automation system based on occupancy
modes, comfort settings, and price

• The price was sent out every 15 minutes to 27 households

EnergyCon2016 April 7th , 2016 14 / 31
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Case Study
• Load, price, temperature and dew point during December
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Benchmark models

ARX: Auto-Regressive model with eXogenous inputs [Dorini et al., 2013, Corradi
et al., 2013]

xt = ϑx X t−n + ϑzZ t + εt ,

with εt ∼ N(0,σ2) and σ2 is the variance.

Z t : price, outside temperature, solar irradiance, wind speed, humidity, dew
point, hour of the day and day of the week.

Simple Inv: Only marginal utilities are estimated (12 blocks). Based on Keshavarz et al.
[2011], Chan et al. [2014].

Inv Few: Our method with only outside temperature and hourly indicator variables as
features. Includes exponential forgetting factor E through weights wt .

Inv All: The same as Inv Few, but including all features.

EnergyCon2016 April 7th , 2016 16 / 31
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Case Study

Rolling-horizon validation for model tuning (based on MAPE)
• Penalization parameter L
• Forgetting factor E

Training (3 months) Validation
(14 days) Test

00:0000:0012:00
Market 
clearing
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Case Study

Rolling-horizon validation for model tuning (based on MAPE)
• Penalization parameter L
• Forgetting factor E
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Case Study

Rolling-horizon validation for model tuning (based on MAPE)
• Penalization parameter L
• Forgetting factor E

Month L E
September 2006 0.3 0
December 2006 0.1 1
March 2007 0.3 1

L ↑⇒ Price-responsiveness↓

EnergyCon2016 April 7th , 2016 17 / 31
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Case Study
Prediction capabilities of different benchmarked methods

40
60

80
12

0

kW

●
● ● ●

●
●

●

●
●

●

●
● ●

●
● ●

●
●

● ● ● ● ● ●
●

● ●
●

●

●

●

●
●

●

●
● ● ● ● ●

●
●

● ● ● ●
● ●

●

● ●
●

●

●

●

●

●

●

●
● ● ● ●

● ●
●

●
●

●
●

●
●

●

 00:00 10th Dec

 12:00 10th Dec

 00:00 11th Dec

 12:00 11th Dec

 00:00 12th Dec

 12:00 12th Dec

 00:00 13th Dec

●

Actual load
ARX
Simple Inv
Inv Few
Inv All

MAE RMSE MAPE
ARX 22.176 27.501 0.275

Simple Inv 44.437 54.576 0.586
Inv Few 17.318 23.026 0.189
Inv All 17.554 22.392 0.199
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Case Study

September March
MAE RMSE MAPE MAE RMSE MAPE

ARX 7.649 9.829 0.235 17.439 23.395 0.2509
Simple Inv 14.263 17.800 0.495 44.687 54.616 0.836

Inv Few 5.719 8.582 0.146 12.652 16.776 0.195
Inv All 5.815 8.494 0.151 14.797 19.119 0.239

The prediction performance of the proposed machinery is only slightly lower than that
of the state-of-the-art prediction tool developed in Hosking et al. [2013] on the same
dataset. However, our methodology produces a market bid!
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Concluding Remarks

What we have done:
• We develop a novel approach to capture the price-response of the pool

of flexible consumers in the form of a market bid using
price-consumption data.

• We propose a generalized inverse optimization framework to estimate
the market bid that best captures the price-response of the pool.

• We leverage auxiliary information on a set of features that may have
predictive power on the consumption pattern of the cluster.

• We test our methodology using data from a real-world experiment and
compare its performance with state-of-the-art prediction models on the
same dataset.
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Concluding Remarks

J. Saez-Gallego, J. M. Morales, M. Zugno, and H. Madsen (2016). A Data-Driven
Bidding Model for a Cluster of Price-Responsive Consumers of Electricity. IEEE
Transactions on Power Systems. DOI: 10.1109/TPWRS.2016.2530843.
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Thanks for your attention!

Website: https://sites.google.com/site/jnmmgo/
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Background Material

• A number of works address the load scheduling problem under real-time/dynamic
pricing:

X Often follow the principles of Model Predictive Control

X Rational-behavior models: the price-response of the pool seeks to minimize the
electricity cost

X A variety of different types of power loads, e.g., a refrigeration system [Hovgaard
et al., 2013], an electric vehicle [Iversen et al., 2014], or the HVAC system of a
building [Qureshi et al., 2014, Zugno et al., 2013]

• Statistical models: the price-response of the pool is inferred from observed data
[Corradi et al., 2013, Hosking et al., 2013]

X Also econometric models that rely on the concept of price elasticities [De Jonghe
et al., 2012]

• Bidding models for large consumers and for retailers that supply an inelastic and
uncertain demand [Conejo et al., 2010, Ch. 8 and 9]

• Bids often boil down to offering load reduction or to buying the price-based
predicted consumption of the pool [Parvania et al., 2013, Qureshi et al., 2014]
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Equivalent Single-level Optimization Problem

Parameter estimation

Minimize
x,θ

∑
t∈T

wt
(
e+

t + e−t
)

subject to

P t +
∑
b∈B

xb,t − xmeas
t = e+

t − e−t t ∈ T

e+
t ,e

−
t ≥ 0 t ∈ T

ab,t ≥ ab+1,t b ∈ B, t ∈ T
KKT conditions of lower-level problem
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Including Auxiliary Information (Features Z )

We assume that the bid parameters are affine functions of the features, e.g.,

P t(Z ) = P +
∑
i∈I

α
P
i Zi,t , t ∈ T
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Step 1: Solution to the relaxed estimation problem

Minimize
xt ,θt ,e+

t ,e
−
t ,α

u
i ,α

d
i

αP
i ,α

P
i ,ψ

P
t ,ψ

P
t ,λ

u
t ,λ

d
t

φi,t ,φi,t
ϕi,t ,ϕi,t

,ηi,t ,ηi,t

Estimation error︷ ︸︸ ︷∑
t∈T

wt(e+
t + e−t )+

+

Penalization of complementarity conditions︷ ︸︸ ︷
L
(∑

b∈B
t∈T

wt

(
ψP

b,t + ψ
P
b,t +

P t − P t

B

)
+
∑

t∈T−1

wt

(
λu

t + λd
t + ru

t + rd
t

))

subject to:

1 Upper-level constraints: linear reformulation of absolute value, constraints on bid
parameters and the α’s

2 Lower-level constraints (price-response model): stationarity, and primal and dual
feasibility
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Step 2: Refining the marginal utilities ab,t

• Reformulate the inverse problem using primal-dual formulation [Chan et al., 2014,
Keshavarz et al., 2011]

• In the lower-level, fix the parameters appearing in the constraints at the values
estimated in Step 1

• Replace the estimated load (x) by the measured one (xmeas)

Inverse problem
(relaxed)

Estimate:     
 

Refining problem
Re-estimate a

b,t

Minimize wε = Weigthed Duality Gap

subject to

Primal Ojective = Dual Objective+ ε

Primal Constraints

Dual Constraints
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Benchmark models

ARX: Auto-Regressive model with eXogenous inputs [Dorini et al., 2013, Corradi
et al., 2013]

xt = ϑx X t−n + ϑzZ t + εt ,

with εt ∼ N(0,σ2) and σ2 is the variance.

Z t : outside temperature, solar irradiance, wind speed, humidity, dew point (up to
36 hours in the past), plus binary indicators for the hour of the day and the day
of the week.

Simple Inv: Only the marginal utilities are estimated (12 blocks) as in Step 2, the rest of bid
parameters to historical maximum/minimum values observed in the last seven
days. Inspired from Keshavarz et al. [2011], Chan et al. [2014].

EnergyCon2016 April 7th , 2016 27 / 31



Back-up Slides

Benchmark models

Inv Few: Our inverse optimization scheme only with the outside temperature and hourly
indicator variables as features.

wt = gapt

(
t
T

)E
, t ∈ T

E ≥ 0, forgetting factor.
T : total number of periods.
gap indicates whether the observation was correctly measured (gap = 1) or not
(gap = 0).

Inv All: The same as Inv Few, but including all features and regularization.
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Case Study

Estimated marginal utility for the pool of price-responsive consumers
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Consider the complementary slackness condition (Ax− b)λ = 0. It can be
equivalently reformulated as [Siddiqui and Gabriel, 2013]:

y1 = 0.5 ((Ax− b) + λ) (2a)
y2 = 0.5 ((Ax− b)− λ) (2b)

y2
1 − y2

2 = (Ax− b)λ = 0 (2c)
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Noting that Ax− b ≥ 0 and λ ≥ 0:

y1 = 0.5 ((Ax− b) + λ) (3a)
y2 = 0.5 ((Ax− b)− λ) (3b)
y1 = |y2| (3c)

We replace the absolute value by the sum of the two positive variables y+
2t and

y−2t , i.e.,

y1 = 0.5 ((Ax− b) + λ) (4a)

y+
2 − y−2 = 0.5 ((Ax− b)− λ) (4b)

y1 = y+
2 + y−2 (4c)

y+
2 , y

−
2 ≥ 0 (4d)

and penalize this sum in the objective function by adding the term L(y+
2 + y−2 ).
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We can make a few substitutions and finally, obtain

y+
2 = 0.5 (Ax− b) (5a)

y−2 = 0.5λ (5b)

which is equivalent to penalizing (Ax− b+ λ) in the objective function.
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