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Challenges

i

f— Preparatory study on 4|

e Smart Appli
— art Appliances tusper,
el
= l - Ecodesign Preparatory Study
. .- performed for the
European Commission
Welcome Project summary Planning & Meetings Documents Register for website Register for meeting Contact & Consortium

Home Project summary

Project Summary R/

The Ecodesign Preparatory Study on Smart Appliances (Lot 33) has analysed the technical, economic, market an %tal aspects with a view to a broad introduction of smart
appliances and to develop adequate policy approaches supporting such uptake. @
The study deals with Task 1 to 7 of the Methodology for Energy related products (MEErP) as follows: ,

Scope, standards and legislation (Task 1, Chapter 1); o
Market analysis (Task 2, Chapter 2); o

User analysis (Task 3, Chapter 3); A/

Technical analysis (Task 4, Chapter 4);

Definition of Base Cases (Task 5, Chapter 5); G '

« Design options (Task &, Chapter 6); /

« Policy and Scenario analysis (Task 7, Chapter 7). 6 .
An executive summary of the project results can be downloaded here. ///0
Throughout the study, new relevant aspects have come up which will be covered in a second phase of the Preparatory Study: , t

« Chargers for electric cars: technical potential and other relevant issues in the context of demand response.
« The modelling done in the framework of MEErP Task 6 and 7 will be updated with PRIMES data that recently became available, and with the EEA-countries.
« The development and assessment of policy options that were identified in the study will be further elaborated and deepened.
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Data Intelligent Energy Systems
for a Smart Society
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Temporal and Spatial Scales

The Smart-Energy Operating-System (SE-OS) is used to develop,
Implement and test of solutions (layers: data, models, optimization,
control, communication) for operating flexible electrical energy
systems at all scales.

Einens

Geographical Scale

Complexity
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DTU
Models for Systems of Systems =

Intelligent systems integration using big data and ICT
solutions are based on grey-box modelling for real-time
operation of flexible energy systems
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Smart-Energy OS e
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SE-OS
Control loop design - logical drawing

| Termostat
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Lab testing ....
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Some case studies ....
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Case study

Control of Power Consumption;
Storing Energy in
the Thermal Mass of Buildings
(Peak shaving)
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Aggregation (over 20 houses)
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Non-parametric Response on
Price Step Change
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Control of Energy Consumption =
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Control performance
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Considerable reduction in peak consumption

Mean daily consumption
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Flexibility Setup and Control
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Figure 1: A smart building is able to respond to a penalty or external control

signal.
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Flexibility Function

I
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Figure 2: The energy consumption before and after an increase in penalty. The
red line shows the normalized penalty while the black line shows the normal-
ized energy consumption. The time scale could be very short with the units be-
ing seconds or longer with units of hours. At time 2.5 the penalty is increased,

Equivalent to: Impulse response, transfer function, and frequency response function
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Figure 5: The Flexibility Function for three different buildings.
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DTU
Penalty Function (examples) =

e Real time CO,. If the real time (marginal) CO, emis-
sion related to the actual electricity production is used as
penalty, then, a smart building will minimize the total car-
bon emission related to the power consumption. Hence,
the building will be emission efficient.

e Real time price. If a real time price 1s used as penalty, the
objective 1s obviously to minimize the total cost. Hence,
the building is cost efficient.

e Constant. If a constant penalty is used, then, the con-
trollers would simply minimize the total energy consump-
tion. The smart building 1s, then, energy efficient.
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Case study

Control of heat pumps;
Storing wind power in pools / DH Systems
(Minimization of Cost / CO2)
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How does it work? ™ Smart

Data measurement and
information gathering -
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How does it work? = Smart

Price based Control
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Share of electricity originating from renewables in Denmark Late Nov 2016 - Start Dec 2016
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Source: pro.electicitymap.org
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Live CO2 emissions of the European
electricity consumption

This shows in real-time where your electricity comes from and
how much CO2 was emitted to produce it.

We take into account electricity imports and exports #»
between countries.

Tip: Click on a country fo start exploring —

B wind power potential (m/s) =3

Like the visualization? We would love to hear your feedback!
Found bugs or have ideas? Report them here.

This project is Open Source: contribute on GitHub.

All data sources and model explanations can be found here.

B svre 20 | W T
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Example: CO2-based control
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Flexibility, Smart Grids
and Flexibility Index
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: c L DTU
Smart Grid Application ==

Peak shaving,

voltage conbrol, Energy efficient, Emission efficient, Cost efficient
Balancing, .. depending on selected Penalty Signal

Congestion managemeant,

i Panalt L
depending an Penalty Generator R Flexibility Function
(Estimator)

Figure 8: Smart buildings and penalty signals.
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Flexibility given
framework conditions

i

Solutions

g Qwul"

010100110100010101000100

| l Flexl

| § Dbility )

||
Framework

Conditions

Models (eg. grey-box models)

Buildings;
Districts;
Cities
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Realistic Penalties for DK
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Figure 6: Penalty signals based on wind and solar power production in Den-
mark during some days in 2017.
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Expected Flexibility Savings Index ==

o
o

Table 1: Expected Flexibility Savings Index (EFSI) for each of the buildings
based on wind, solar and ramp penalty signals.

Wind (%) Solar (%) Ramp (%)
Building 1 | 11.8 3.6 1.0
Building 2 | 4.4 14.5 5.0
Building 3 | 6.0 10.0 18.4
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Flexibility without
framework conditions
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Solutions
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Reference Penalties

I
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Figure 7: Reference scenarios of penalty signals related to ramping or peak
issues as well as the integration of wind and solar power.
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Flexibility Index =

Table 2: Flexibility Index for each of the buildings based reference penalty
signals representing wind, solar and ramp problems.

Wind (%) Solar (%) Ramp (%)
Building 1 | 36.9 10.9 5.2
Building 2 | 7.2 24.0 11.1
Building 3 | 17.9 35.6 67.5
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© Flexibility (or virtual storage) characteristics:

Supermarket refrigeration can provide storage 0.5-2 hours ahead

Buildings thermal capacity can provide storage up to, say, 1-10 hours ahead
Buildings with local water storage can provide storage up to, say, 3-18 hours ahead
District heating/cooling systems can provide storage up to 1-3 days ahead

DH systems with storage solutions can provide semi-seasonal storage

Gas systems can provide seasonal storage
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Case study

Identifying the Thermal Performance of
Buildings using Meter Data
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U=0.86 W/m2K U=0.21 W/m2K

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)
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Examples (2)

Whole House Heat Loss - Measured versus Predicted for
New Build UK Dwellings (n=18)

300
OMeasured Heat Loss ]
250 4 B Predicted Heat Loss
__E_ 200 H =
=3
@ 150 H M
o
-
g
T 100 4
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Measured versus predicted energy consumption for different dwellings
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Model for the heat dynamics

I

@ Measurements:
— Indoor air temp
T, — Radiator heat sup.
— Ambient air temp
— Solar radiations

@ Hidden states are:

m&:Wﬁx:a:mxjxjxi
T — Heat accumulated

in the building

— k: Fraction of solar
radiation entering

I R, the interior

T

- O O -

|
D, | b A, w B
|
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Res e
Results
UA oua gA™ wAT™ wAT™® wARX T. or
W/°C W  W/°C W/°C W/°C °C
4218598 211.8 10.4 597.0 11.0 3.3 89 236 1.1
4381449 228.2 126 1012.3 29.8 42 .8 390.7 19.4 1.0
4711160 155.4 6.3 518.8 14.5 4.4 0.1 225 0.9
4836681 155.3 8.1 5901.0 30.5 28.0 21.4 235 1.1
4836722 236.0 17.7 1578.3 4.3 3.3 18.9 23.5 1.6
4986050 159.6 10.7 715.7 10.2 7.5 7.2 20.8 1.4
5069878 1448 104 87.6 3.7 1.6 17.3 21.8 1.5
5069913 207.8 9.0 062.5 3.7 8.6 106 22.6 0.9
5107720 189.4 154 657.7 41 .4 20.4 16.56 21.0 1.6
2 CITIES
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Perspectives

® |dentification of most
problematic buildings

© Automatic energy labelling

® Recommendations:

¥+ Should they replace the windows?

¥+ Or put more insulation on the roof?
* Or tigthen the building?
>

Should the wall against north be
further insulated?

@ Better control of the heat
supply

Q CITIES
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Perspectives (2)
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"Shat, jeg kan se pa k-vaardierne, at vinduaerne skal pudsas"
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Summary i
@S
Bt
@ A framework called Smart-Energy OS based on grey-box modelling is
described for implementing smart energy systems in cognitive buildings
with storage options
o A number of case studies related to smart buildings is outlined
® The intelligence setup for the smart buildings can focus on
*® Energy Efficiency
% Cost Efficiency (Minimization)
* Emission Efficiency (-> accelerating the transition to a low-carbon
energy system)
%* Smart Grid demand (like ancillary services needs, ...)
@ We have demonstrated a large potential for unlocking the flexibility and for
demand response using grey-box modelling and Al
@ We have suggested a method for characterizing the energy flexibility which
facilitates smart grid applications
@ We have demonstrated Al methods for optimizing the energy savings
> CITIES
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For more information ...

See for instance

www.smart-cities-centre.org

...0r contact
— Henrik Madsen (DTU Compute)
hmad@dtu.dk

Acknowledgements - IFD 1305-00027B (CITIES), REBUS project,
and EU Interreg V (SCA project)
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