Smart and Flexible Buildings with a Focus on DTU Data-Intelligent Control and Storage Options

Henrik Madsen

Results from the CITIES, SCA and REBUS projects

Technical University of Denmark

http://www.smart-cities-centre.org

http://www.henrikmadsen.org

Contents

- Flexibility enabled using our Smart-Energy OS
- Virtual storage options in smart buildings
- Flexibility Function and Index
- Optimized and evidence based methods for energy savings

Challenges

European Commission

Ecodesign Preparatory Study performed for the

DIU

	<u>a</u>				Ecodes perfori Europe	sign Preparatory Study med for the ean Commission
Welcome	Project summary	Planning & Meetings	Documents	Register for website	Register for meeting	Contact & Consortium
Home > Pro	ject summary					
Projec	t Summar	У		All		
The Ecodesign F appliances and t	reparatory Study on Sma o develop adequate policy	rt Appliances (Lot 33) has an / approaches supporting such	alysed the technica n uptake.	l, economic, market and sea	stal aspects with a view to a	broad introduction of smart
The study deals	with Task 1 to 7 of the Me	thodology for Energy related	products (MEErP) a	as follows:		
 Scope, sta Market an User analy Technical Definition Design op Policy and 	ndards and legislation (Ta alysis (Task 2, Chapter 2) rsis (Task 3, Chapter 3); analysis (Task 4, Chapter of Base Cases (Task 5, C tions (Task 6, Chapter 6); Scenario analysis (Task	ask 1, Chapter 1); ; 4); hapter 5); 7, Chapter 7).			no filet	Ġ.
An executive sur	nmary of the project resul	ts can be downloaded here.				11:
Throughout the s	tudy, new relevant aspec	ts have come up which will be	e covered in a seco	nd phase of the Preparatory S	Study:	1 L
Chargers	or electric cars: technical	potential and other relevant i	ssues in the contex	t of demand response.		•

- · Chargers for electric cars: technical potential and other relevant issues in the context of demand response.
- The modelling done in the framework of MEErP Task 6 and 7 will be updated with PRIMES data that recently became available, and with the EEA-countries.
- The development and assessment of policy options that were identified in the study will be further elaborated and deepened.

Data Intelligent Energy Systems for a Smart Society

Temporal and Spatial Scales

The *Smart-Energy Operating-System (SE-OS)* is used to develop, implement and test of solutions (layers: data, models, optimization, control, communication) for *operating flexible electrical energy systems* at **all scales**.

Models for Systems of Systems

IDA Event: Cognitive Buildings, January 2019

Ģ

Smart-Energy OS

CITIES Centre for IT Intelligent Energy Systems

IDA Event: Cognitive Buildings, January 2019

DTU

38	acow approach, but we are energy
39	# Try +n man and a get dor
40	require/marallelize anyway
	numcorec
15 ¹⁰ 1 ¹¹¹	mclannly/
2 ¹¹ 1111	* . 7 · N
	<pre>iwncuun(L,Oata) {</pre>
	<pre>httm:/pasce(1,/, 'N))</pre>
1 7	
10	i
] _ MITCH/daramer_add arus addagaaaaatt
13 :0	
) () 	
,	
)	
).)	aadatasnum readings[i] <- Length()

SE-OS Control loop design – **logical drawing**

Lab testing

SN-10 Smart House Prototype

Some case studies

Case study

Control of Power Consumption; Storing Energy in the Thermal Mass of Buildings (Peak shaving)

IDA Event: Cognitive Buildings, January 2019

Non-parametric Response on Price Step Change

Olympic Peninsula

IDA Event: Cognitive Buildings, January 2019

DTU

Ş

Control of Energy Consumption

Control performance

Considerable reduction in peak consumption

Mean daily consumption shift

IDA Event: Cognitive Buildings, January 2019

DTU

Flexibility Setup and Control

Figure 1: A smart building is able to respond to a penalty or external control signal.

Figure 2: The energy consumption before and after an increase in penalty. The red line shows the normalized penalty while the black line shows the normalized energy consumption. The time scale could be very short with the units being seconds or longer with units of hours. At time 2.5 the penalty is increased,

Equivalent to: Impulse response, transfer function, and frequency response function

Figure 5: The Flexibility Function for three different buildings.

Penalty Function (examples)

- **Real time CO**₂. If the real time (marginal) CO₂ emission related to the actual electricity production is used as penalty, then, a smart building will minimize the total carbon emission related to the power consumption. Hence, the building will be *emission efficient*.
- **Real time price**. If a real time price is used as penalty, the objective is obviously to minimize the total cost. Hence, the building is *cost efficient*.
- **Constant**. If a constant penalty is used, then, the controllers would simply minimize the total energy consumption. The smart building is, then, *energy efficient*.

Case study

Control of heat pumps; Storing wind power in pools / DH Systems (Minimization of Cost / CO2)

Share of electricity originating from renewables in Denmark Late Nov 2016 - Start Dec 2016

Live CO2 emissions of the European electricity consumption

This shows in real-time where your electricity comes from and how much CO2 was emitted to produce it.

We take into account electricity imports and exports >>> between countries.

Tip: Click on a country to start exploring \rightarrow

This project is Open Source: contribute on GitHub

All data sources and model explanations can be found here.

Carbon intensity

aCO2ea/

January 25, 2017 UTC+01:00

8:01 AM

3

Example: Price-based control

A12979 Controller

Example: CO2-based control

Flexibility, Smart Grids and Flexibility Index

Smart Grid Application

Figure 8: Smart buildings and penalty signals.

IDA Event: Cognitive Buildings, January 2019

JIU

s, January 2019

Flexibility given framework conditions

DTU

Figure 6: Penalty signals based on wind and solar power production in Denmark during some days in 2017.

Expected Flexibility Savings Index

Table 1: Expected Flexibility Savings Index (EFSI) for each of the buildings based on wind, solar and ramp penalty signals.

	Wind (%)	Solar (%)	Ramp (%)
Building 1	11.8	3.6	1.0
Building 2	4.4	14.5	5.0
Building 3	6.0	10.0	18.4

Flexibility without framework conditions

DTU

Data

Figure 7: Reference scenarios of penalty signals related to ramping or peak issues as well as the integration of wind and solar power.

Flexibility Index

Table 2: Flexibility Index for each of the buildings based reference penalty signals representing wind, solar and ramp problems.

	Wind (%)	Solar (%)	Ramp (%)
Building 1	36.9	10.9	5.2
Building 2	7.2	24.0	11.1
Building 3	17.9	35.6	67.5

Virtual Storage Solutions

Flexibility (or virtual storage) characteristics:

- Supermarket refrigeration can provide storage 0.5-2 hours ahead
- Buildings thermal capacity can provide storage up to, say, 1-10 hours ahead
- Buildings with local water storage can provide storage up to, say, 3-18 hours ahead
- District heating/cooling systems can provide storage up to 1-3 days ahead
- DH systems with storage solutions can provide semi-seasonal storage
- Gas systems can provide seasonal storage

Case study

Identifying the Thermal Performance of Buildings using Meter Data

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)

Examples (2)

Measured versus predicted energy consumption for different dwellings CITIES

Results

	UA	σ_{UA}	gA^{max}	wA_E^{max}	wA_S^{max}	wA_W^{max}	T_i	σ_{T_i}
	$W/^{\circ}C$		W	$W/^{\circ}C$	$W/^{\circ}C$	$W/^{\circ}C$	°C	
4218598	211.8	10.4	597.0	11.0	3.3	8.9	23.6	1.1
4381449	228.2	12.6	1012.3	29.8	42.8	39.7	19.4	1.0
4711160	155.4	6.3	518.8	14.5	4.4	9.1	22.5	0.9
4836681	155.3	8.1	591.0	39.5	28.0	21.4	23.5	1.1
4836722	236.0	17.7	1578.3	4.3	3.3	18.9	23.5	1.6
4986050	159.6	10.7	715.7	10.2	7.5	7.2	20.8	1.4
5069878	144.8	10.4	87.6	3.7	1.6	17.3	21.8	1.5
5069913	207.8	9.0	962.5	3.7	8.6	10.6	22.6	0.9
5107720	189.4	15.4	657.7	41.4	29.4	16.5	21.0	1.6

.

Perspectives

- Identification of most problematic buildings
- Automatic energy labelling
- Recommendations:
 - Should they replace the windows?
 - Or put more insulation on the roof?
 - Or tigthen the building?
 - Should the wall against north be further insulated?
- Better control of the heat supply

.

Perspectives (2)

"Skat, jeg kan se på k-værdierne, at vinduerne skal pudses"

Summary

- A framework called Smart-Energy OS based on grey-box modelling is described for implementing smart energy systems in cognitive buildings with storage options
- A number of case studies related to smart buildings is outlined
 - The intelligence setup for the smart buildings can focus on
- ★ Energy Efficiency
- ★ Cost Efficiency (Minimization)
- Emission Efficiency (-> accelerating the transition to a low-carbon energy system)
- ★ Smart Grid demand (like ancillary services needs, ...)
 - We have demonstrated a large potential for unlocking the flexibility and for demand response using grey-box modelling and AI
 - We have suggested a method for characterizing the energy flexibility which facilitates smart grid applications
 - We have demonstrated AI methods for optimizing the energy savings

For more information ...

See for instance

www.smart-cities-centre.org

...or contact

 Henrik Madsen (DTU Compute) hmad@dtu.dk

Acknowledgements - IFD 1305-00027B (CITIES), REBUS project, and EU Interreg V (SCA project)

Some references

- Madsen, Henrik; Holst, Jan. Estimation of Continuous-Time Models for the Heat Dynamics of a Building. In: Energy and Buildings, Vol. 22, 1995
- Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik. Modelling the heat dynamics of a building using stochastic differential equations. In: Energy and Buildings, Vol. 31, No. 1, 2000, p. 13-24.
- Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay. Using continuous time stochstic modelling and nonparametric statistics to improve the quality of first principles models. In: Computer Aided Chemical Engineering, Vol. 10, 2002, p. 901-906
- Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay. A unified framefork for systematic model improvement. In: Process Systems Engineering, Vol. 15, 2003, p. 1292-1297.
- Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay. Parameter Estimation in Stochastic Grey-Box Models. In: Automatica, Vol. 40, No. 2, 2004, p. 225-237.
- Nielsen, Henrik Aalborg; Madsen, Henrik. Modelling the Heat Consumption in District Heating Systems using a Grey-box approach. In: Energy and Buildings, Vol. 38, No. 1, 2006, p. 63-71.
- Friling, N.; Jimenez, M.J.; Bloem, H.; Madsen, Henrik. Modelling the heat dynamics of building integrated and ventilated photovoltaic modules. In: Energy and Buildings, Vol. 41, No. 10, 2009, p. 1051-1057.
- Bacher, Peder; Madsen, Henrik. Identifying suitable models for the heat dynamics of buildings. In: Energy and Buildings, Vol. 43, No. 7, 2011, p. 1511-1522.
- Lodi, C.; Bacher, Peder; Cipriano, J.; Madsen, Henrik. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations. In: Energy and Buildings, Vol. 50, 2012, p. 273-281.
- Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik. A Transmission-Cost-Based Model to Estimate the Amount of Market-Integrable Wind Resources. In: IEEE Transactions on Power Systems, Vol. 27, No. 2, 2012, p. 1060-1069.
- Halvgaard, Rasmus; Bacher, Peder; Perers, Bengt; Andersen, Elsa; Furbo, Simon; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad; Madsen, Henrik. Model predictive control for a smart solar tank based on weather and consumption forecasts. In: Energy Procedia, Vol. 30, 2012, p. 270-278.

Some references (cont.)

- Dorini, Gianluca Fabio ; Pinson, Pierre; Madsen, Henrik. Chance-constrained optimization of demand response to price signals. In: IEEE Transactions on Smart Grid, Vol. 4, No. 4, 2013, p. 2072-2080.
- Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg; Perers, Bengt. Short-term heat load forecasting for single family houses. In: Energy and Buildings, Vol. 65, 2013, p. 101-112.
- Corradi, Olivier; Ochsenfeld, Henning Peter; Madsen, Henrik; Pinson, Pierre. Controlling Electricity Consumption by Forecasting its Response to Varying Prices. In: IEEE Transactions on Power Systems, Vol. 28, No. 1, 2013, p. 421-430.
- Zugno, Marco; Morales González, Juan Miguel; Pinson, Pierre; Madsen, Henrik. A bilevel model for electricity retailers' participation in a demand response market environment. In: Energy Economics, Vol. 36, 2013, p. 182-197.
- Meibom, Peter; Hilger, Klaus Baggesen; Madsen, Henrik; Vinther, Dorthe. Energy Comes Together in Denmark: The Key to a Future Fossil-Free Danish Power System. In: IEEE Power & Energy Magazine, Vol. 11, No. 5, 2013, p. 46-55.
- Andersen, Philip Hvidthøft Delff ; Jiménez, María José ; Madsen, Henrik ; Rode, Carsten. Characterization of heat dynamics of an arctic low-energy house with floor heating. In: Building Simulation, Vol. 7, No. 6, 2014, p. 595-614.
- Andersen, Philip Hvidthøft Delff; Iversen, Anne; Madsen, Henrik; Rode, Carsten. Dynamic modeling of presence of occupants using inhomogeneous Markov chains. In: Energy and Buildings, Vol. 69, 2014, p. 213-223.
- Madsen, H, Parvizi, J, Halvgaard, RF, Sokoler, LE, Jørgensen, JB, Hansen, LH & Hilger, KB 2015, 'Control of Electricity Loads in Future Electric Energy Systems'. in AJ Conejo, E Dahlquist & J Yan (eds), Handbook of Clean Energy Systems: Intelligent Energy Systems. vol. 4, Wiley.
- Halvgaard, RF, Vandenberghe, L, Poulsen, NK, Madsen, H & Jørgensen, JB 2016, Distributed Model Predictive Control for Smart Energy Systems IEEE Transactions on Smart Grid, vol 7, no. 3, pp. 1675-1682.
- Bacher, P, de Saint-Aubain, PA, Christiansen, LE & Madsen, H 2016, Non-parametric method for separating domestic hot water heating spikes and space heating Energy and Buildings, vol 130, pp. 107-112.

