AS4.0

Availability

Conclusions

Motivations

OO

Flexibility

000

Utilizing Flexibility Resources in the Future Power System Operation: Alternative Approaches

G. De Zotti*

A. Pourmousavi**

H. Madsen*

N.K. Poulsen*

* Technical University of Denmark** The University of Queensland

Outline

- Motivations
- Coordinating flexible resources
- Different approaches in literature: market versus control
- Proposed methodology: AS4.0
- Estimating the available flexibility
- Conclusions

The electricity supply service Challenges introduced by RES

Flexibility

000

Motivations

Adding RES to the generation portfolio affects the quality of service and power system operation because of:

AS4.0

OOO

Stochasticity

Literature

Non-linearity

Dynamics

The generation from RES **cannot be planned** in the same way as conventional power plants.

Availability

The generation can follow a **non-linear trend** in spite of the linear bidding and clearing process.

Voltage and frequency levels fluctuate due to the power imbalance.

The electricity supply service Consequences for the AS

Flexibility

000

Motivations

This is particularly affecting the provision of the ancillary services:

Literature

 $\cap \cap \cap$

AS4.0

000

Availability

Conclusions

June 2018

The electricity supply service Exploiting the energy flexibility

Flexible resources

Motivations

OO

Flexible loads, energy storage and generation are able to **adapt** their **behaviour** according to the **necessity** of the grid.

Flexibility

 \bigcirc

They need to be **coordinated** in a **fast** and **efficient** manner in order to be valuable.

Time

Availability

Conclusions

Baseline consumption

AS4.0

000

- Reduced demand
- Shifted demand

Coordinating the energy flexibility AS provision operation

Literature $\cap \cap \cap$

In order to coordinate the energy flexibility, it is important to develop an **approach** that satisfies all the different **requirements** of the smart grid era.

erature considers various annroaches

Flexibility

 $\bigcirc \bigcirc \bigcirc$

Motivations

 $\bigcirc \bigcirc$

lerature considers various approaches:		Certainty of the response
Market-based	Control-based	Energy system integration
approach	approach	DS management
Wholesale AS market	Direct control	15 management
		Prosumer privacy
D2D	Indirect control	Scalable
1 21		Simple
Transactive energy	AS4.0	Fast
		Secure
		Cheap
ENERGYCON 2018	June 2018	6

AS4.0

000

Requirements

Stochasticity

Non-linearity

Dynamics

Conclusions

Availability

Coordinating the energy flexibility The electricity price

Literature

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Flexibility

 $\bigcirc\bigcirc\bigcirc$

Motivations

 $\bigcirc \bigcirc$

The submission of **time-varying electricity prices** can support the exploitation of the **price responsiveness** for **flexible** energy resources.

AS4.0

000

Nowadays, the **wholesale** electricity price is **flexible** and **changes** sub- hourly through a market and clearing process.

Availability

Conclusions

However, the **retail** electricity price is **fixed** by the **utility** and **does not change over time.**

ENERGYCON 2018

Coordinating the energy flexibility Market-based operation

Literature

Transactive energy

Motivations

 $\bigcirc \bigcirc$

Flexibility

000

It involves an agent to **aggregate** DERs. It formulates bids from **feedback** signals communicated with the consumers.

AS4.0

000

Certain response Distribution system management

Availability

Coordinating the energy flexibility Market-based operation

P2P

It is a coordinated multi-lateral trading framework which **avoids** the **interference** of the middle man.

C

Scalable Stochastic, non-linear and dynamic

No transmission system management Purely financial

Coordinating the energy flexibility Control-based operation

Literature

Control-based approach

Flexibility

000

Motivations

 $\bigcirc \bigcirc$

It adopts **controls** at the lowest level of the grid. Consumers are managed by **aggregators** through indirect and direct controls. Market is maintained at the highest level.

Availability

Conclusions

AS4.0

000

It can use one-way communication Stochastic, non-linear and dynamic

Dependency on the market No transmission system management

Coordinating flexible resources AS4.0: Idea

What if system operators could formulate real-time varying prices according to the flexibility needed and exploit a one-way communication?

Coordinating flexible resources AS4.0: Idea

Flexibility

000

Motivations

OO

What if system operators could formulate real-time varying prices according to the flexibility needed and exploit a one-way communication?

AS4.0

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Availability

Conclusions

 \bigcirc

Coordinating flexible resources AS4.0: Structure

Literature

 $\cap \cap \cap$

Flexibility

000

Motivations

 $\bigcirc \bigcirc$

AS4.0

 $\bigcirc \bigcirc \bigcirc$

Availability

Coordinating flexible resources AS4.0: Structure

Flexibility

000

Motivations

 $\bigcirc \bigcirc$

AS4.0

 $\bigcirc \bigcirc \bigcirc$

Availability

Coordinating flexible resources AS4.0: Structure

Flexibility

000

Motivations

 $\bigcirc \bigcirc$

AS4.0

 $\bigcirc \bigcirc \bigcirc$

Availability

Motivations

AS4.0

Availability

Conclusions

AS4.0: Summary

Flexibility

000

AS4.0 is able to solve all the problems in one set, taking into account **stochasticity**, **non linearity** and **dynamics**.

It exploits the **potential** of the flexible resources at the prosumers' level of **any size**. Also, being based on indirect controls, it is **fast** and fully **automated** at different levels.

Estimating the available flexibility Aggregated price response

How can we estimate the consumers' behaviour at the TSO level?

Estimating the available flexibility **Aggregated price response**

Flexibility

 $\cap \cap \cap$

Motivations

()()

How can we estimate the consumers' behaviour at the TSO level? $\sum_{t=1}^{J} \left(\boldsymbol{\lambda}^{\text{base}} + \boldsymbol{\Delta} \boldsymbol{\lambda}_{t}^{u} + \boldsymbol{\Delta} \boldsymbol{\lambda}_{t}^{d} \right) \sum_{i=1}^{J} \left(\boldsymbol{L}_{t,j}^{\text{base}} + L_{t,j}^{d} - L_{t,j}^{u} \right)$ $\min_{\substack{L_{t,j}^{\alpha}}}$ We assume to deal with consumers that are equipped with **energy management** systems. s.t. Their response is statistically modelled, knowing:

Literature

The **composition** of the aggregated pool of consumers.

The aggregated **measurements** for . each load category.

We approach a **cost minimisation**, evaluating the perspective of the consumers.

$$-\mathbf{r}_{j}^{\alpha} \leq L_{t,j+1}^{\alpha} - L_{t,j}^{\alpha} \leq \mathbf{r}_{j}^{\alpha} \qquad \forall t, j$$

$$0 \leq L_{t,j}^{d} \leq u_{t,j}^{d} (\mathbf{L}_{t,j}^{\max} - \mathbf{L}_{t,j}^{\max}) \mathbf{a}_{t,j}^{d} \quad \forall t, j$$

$$0 \leq L_{t,j}^{u} \leq u_{t,j}^{u} (\mathbf{L}_{t,j}^{\max} - \mathbf{L}_{t,j}^{\min}) \mathbf{a}_{t,j}^{u} \quad \forall t, j$$

$$\sum_{1}^{\tau} (L_{t,j}^{d} - L_{t,j}^{u}) = 0 \qquad \forall j$$

Availability

Conclusions

AS4.0

()()()

$$u_{t,j}^d + u_{t,j}^u \le 1 \qquad \qquad \forall t,j$$

$$y_{t,j}^{\alpha} - z_{t,j}^{\alpha} = u_{t,j}^{\alpha} - u_{t,j-1}^{\alpha} \qquad \forall t, j$$

$$y_{t,j}^{\alpha} + z_{t,j}^{\alpha} \le 1 \qquad \forall t, j$$

$$\sum_{i=1}^{n} y_{t,j}^{\alpha} \le \mathbf{n}_{j}^{\alpha} \qquad \forall j$$

$$\sum_{\substack{t=t'\\t'\neq \overline{\mathbf{J}}^{\alpha}}}^{t+\underline{\mathbf{d}}_{j}^{-}} u_{t',j}^{\alpha} \ge \underline{\mathbf{d}}_{j}^{\alpha} y_{t',j}^{\alpha} \qquad \forall t' \in \Psi, j$$

$$\sum_{t=t'}^{t+\mathbf{a}_j} z_{t,j'}^{\alpha} \ge y_{t',j}^{\alpha} \qquad \forall t' \in \Psi, j$$
$$t' \in \Psi, t' : \left[(t + \overline{\mathbf{d}}_j^d < \tau) \cap (t + \overline{\mathbf{d}}_j^u < \tau) \right]$$

MotivationsFlexibilityLiteratureAS4.0AvailabilityConclusionsOOOOOOOOOOOO

Conclusions

We present **AS4.0**, a one-way communication approach which exploits controls to handle the ancillary services provision in smart grids. Such an approach is presented together with the existing **alternatives**, including **P2P**, **transactive energy and the control-based approach**.

This new method potentially satisfies the various **requirements** of the grid with high penetration of RES, handling stochasticity, non-linearity and dynamics in a fast and simple manner.

We also present an approach for the **estimation of the available flexibility** achievable from consumers at the transmission system level. This is possible by exploiting aggregated measurements for different categories of loads.

In the future, the higher penetration of **energy management systems** will facilitate to get a fast reaction from the consumers to different price signals.

Future work

Motivations

 $\bigcirc\bigcirc$

• Modelling the interaction of DSO and TSO under the AS4.0 mechanism

Literature

AS4.0

()()()

Availability

Conclusions

- Handling the possible conflicts of interest
- Implementing a model to derive time-varying retail prices

Contacts

• Giulia De Zotti gizo@dtu.dk

Flexibility

 $\cap \cap \cap$

- Seyyed Ali Pourmousavi Kani <u>a.pour@uq.edu.au</u>
- Henrik Madsen <u>hmad@dtu.dk</u>
- Niels Kjølstad Poulsen <u>nkpo@dtu.dk</u>

Thank you!