A Control-Based Approach for Solving Ancillary Service Problems in Smart Grids

H. Madsen ¹ G. De Zotti ¹ S. A. Pourmousavi Kani ¹ N. K. Poulsen ¹

¹Technical University of Denmark

May 10th, 2017
Outline

- Applying Control Theory to the Study of Power Markets
- Smart-Energy Operating Systems
- Control and Optimisation
- Grey Box Modelling
- CITIES and SmartNet Projects
Applying Control Theory to the Study of Power Markets

Advantages in handling effectively

Dynamics
control theory provides ways of modeling the dynamics which is intrinsic in energy markets

↓

it is possible to develop advanced bidding strategies which exploit the inclusion of the dynamics in the model

Uncertainty

stochastic control theory allows for taking into account different sources of uncertainty (wind, ...)

↓

it is possible to develop bidding strategies which are optimal with respect to the stochastic characteristics of the market
Smart-Energy Operating Systems
Temporal and Spatial Scales

The Smart-Energy Operating Systems (SE-OP) is used to develop, implement and test the solutions (layers: data, models, optimisation, control, communication) for operating flexible electrical energy systems at all scales.
Smart-Energy Operating Systems
Control and Optimisation

Day-Ahead:
Stochastic programming based on scenarios

Direct Control:
Actuator: Power
Two way communication

Indirect Control:
Actuator: Price
One way communication
Grey Box Modelling

Intelligent systems integration using data and ICT solutions are based on grey-box models for real-time operations of flexible power/energy systems
Software solutions

Software for combined physical and statistical modelling

Continuous Time Stochastic Modelling (CTSM) is a software package for modelling and simulation of combined physical and statistical models. You find a technical description and the software at CTSM.info.

Software for Model Predictive Control

HPMPC is a toolbox for High-Performance implementation of solvers for Model Predictive Control (MPC). It contains routines for fast solution of MPC and MHE (Moving Horizon Estimation) problems on embedded hardware. The software is available on GitHub.

MPCR is a toolbox for building Model Predictive Controllers written in R, the free statistical software. It contains several examples for different MPC problems and interfaces to opensource solvers in R. The software is available on GitHub.
The **SmartNet** project arises from the need to find answers and propose new practical solutions to the increasing integration of Renewable Energy Sources in the existing electricity transmission network.
Existing Markets: Challenges

- Dynamics
- Stochasticity
- Non-linearity
- Many power-related services
- Interaction between grid (voltage) levels
- Speed/ problem size
- Characterisation of flexibility
- Requirements on user installations
SE- OS Characterisation

- ‘Bidding – clearing – activation’ at higher levels
- Nested sequence of systems – systems of systems
- Hierarchy of optimisation (or control) problems
- Control principles at higher spatial/temporal resolutions
- Cloud or Fog (IoT, IoS) based solutions
- Facilitates energy systems integration
- Allow for new players (specialised aggregators)
- Simple setup for the communication and contracts
- Provides a solution for all ancillary services
- Harvest flexibility at all levels
Goals for Pilot Project

Aggregation
- Demonstrate aggregation services

Communication
- Implementation in field of ICT technology to exchange data between TSO, DSO, aggregator and summer houses

Forecasting
- Use of on-line services for price and load forecasting + model predictive

Ancillary Services
- Development of architecture for ancillary services
Overview: Danish Pilot

Control Theory
Optimisation
Grey box
CITIES
SmartNet
Lab Testing
Outline

- Coordinating flexible resources
- Proposed methodology
- Main advantages of the proposed methodology
- Main concerns to be addressed
- Conclusions
The electricity supply service
Consequences for the AS

This is particularly affecting the provision of the ancillary services:

Transmission
- Congestion management
- Frequency control

Distribution
- Congestion management
- Voltage control
- Balancing
The electricity supply service
Exploiting the energy flexibility

Flexible resources

Flexible loads, storage and generation can adapt their behaviour according to the necessity of the grid.

They need to be coordinated in a fast and efficient manner in order to be valuable.
Coordinating flexible resources
Control-based approach

Different possibilities can be investigated for the coordination of the flexible resources:

Control problem is formulated at the prosumers’ level.
Coordinating flexible resources
Control-based approach

The control-based approach is formulated in two steps:

I. A **control problem** at the sub-aggregator level, to determine the appropriate Control (Price) signal to address ancillary services issues.

II. A **model-predictive control** at the consumer’s level acting upon receiving the control signal.
Proposed methodology
Control-based methodology

We adopt a control-based approach where the **price** becomes the driver to **manipulate** the behaviour of a certain pool flexible prosumers.
Proposed methodology
The electricity price

For the retail price there is no flexibility and the prosumers do not consider the condition of the grid in their actions.

It is fundamental to reconsider the formulation of the retail electricity price to exploit the price responsiveness of the flexible energy resources.
Proposed methodology
Structures for the electricity price

Current structure

Market

\[P(t) \]

TSO

\[P [\text{SWMH}] \]

Utility

\[P \]

Black box

Proposed structure

Market

\[P(t) \]

\[\Delta P_1(s, t) \]

TSO

\[P_2(s, t) \]

\[\Delta P_2(s, t) \]

BRP

\[P_3(s, t) \]

\[\Delta P_3(s, t) \]

DSO

\[P(s, t) \]

\[P [\text{SWMH}] \]

Motivation

Problem

Methodology

Advantages

Conclusions
Proposed methodology
Formulating the delta-prices

Objective function
Defining the challenges of the grid and the objective to provide as ancillary services.

Prosumers' model
Understanding how the consumer reacts according to the price

CBA
Running the optimisation problem including the operational constraints

Price
Identifying the delta-prices $\Delta P(s, t)$

Motivation

Problem

Methodology

Advantages

Conclusions

Giulia De Zotti
Main advantages of the proposed methodology

Several advantages can be identified for such methodology:

- It takes into account **stochasticity**, **non-linearity** and **dynamics**.
- It is able to **solve** all the **ancillary services’ problems** in **one set**.
- It exploits the **potential** of flexible resources at the prosumers’ level of **any size**.
- It is **fast** and fully **automated** at different levels.
- It facilitates the **integration** of the different energy carriers.
Conclusions

We present a control based-approach to solve the ancillary services problem in smart grids.

Such methodology is able to solve all the problems in one set, taking into account stochasticity, non linearity and dynamics.

We also suggest a change in the formulation of the retail electricity price, generating delta-prices that can replace the AS market.

Future simulations will test the stability of the method.
Contacts

- Henrik Madsen hmad@dtu.dk
- Giulia De Zotti gizo@dtu.dk
- Ali Seyyed Ali Pourmousavi Kani sapk@dtu.dk
- Niels Kjølstad Poulsen nkpo@dtu.dk