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Annex 71:
Building energy performance
assessment based on in-situ
measurements 
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A B S T R A C T

Modelling the effects of solar irradiation plays an important role in various applications. This paper describes a
semi-parametric (combined grey-box and spline-based), data-driven technique that can be used to model systems
in which the solar gain depends on the sun position. The solar gain factor is introduced, i.e. the absorbed fraction
of measured solar irradiation, and estimated as a continuous non-parametric function of the sun position. The
implementation of the spline-based solar gain factor in a grey-box model framework is described. The method is
tested in two case studies—in a model of the internal temperature of a dwelling in Aalborg, Denmark, and a
model of the return temperature of a solar collector field in Solrød, Denmark. It is shown that the solar gain
factor as a function of sun position is able to account for structural variations in solar gain that may occur due to
factors such as shading obstacles and window or absorber orientation. In both test cases, the spline-based solar
gain function improved the model accuracy significantly, and largely reduced structural errors in prediction
residuals. In addition, the shape of the estimated function provided insight into the dynamics of the system and
the local solar input characteristics. Accurate representation of such site characteristics was not possible with
any data-driven method found in the literature. Besides the grey-box models used in this study, the solar gain
factor can be used in a variety of data-driven models, for example in linear regression models.

1. Introduction

Solar irradiation is a crucial factor in the field of building en-
gineering, renewable energy generation, and many other applications.
In many cases, measurements or predictions of the solar irradiation are
available, and the effect of solar irradiation needs to be captured in a
model. However, the relation between solar gain and measured solar
irradiation is typically non-linear and dependent on the position of the
sun and site characteristics. This paper, presents and implements a data-
driven model for dynamical thermal systems, that include a sun posi-
tion dependent solar gain. The model is tested in two thermal systems: a
building and a solar collector field.

In both systems, the heat dynamics related to solar irradiation are
modelled for various reasons. For buildings, models are used to docu-
ment the energy performance and identify a potential energy perfor-
mance gap (Roels et al., 2017; Johnston et al., 2016; Haldi and
Robinson, 2011; Brohus et al., 2010; Socolow, 1977). For instance, this
has been done using data-driven thermal dynamic building models such
as grey-box models (Roels et al., 2017; Bacher and Madsen, 2011;

Madsen and Holst, 1995). As solar heat gain can significantly affect
estimated thermal building properties, the model used for solar heat
gain needs to be accurate. This is especially true for well-insulated
buildings with low thermal mass and large window areas.

Similarly, for solar collector fields, forecasting models need to de-
scribe solar irradiation effects accurately to improve heat output fore-
casts and system control. The control must respond to rapid fluctuations
in solar irradiation to prevent the collector fluid from boiling, and to
ensure a high and stable outlet temperature. As solar irradiation is the
dominating effect on the outlet temperature, an accurate model of the
absorbed solar energy can improve predictions and hence operation of
solar heat systems.

The following two sections present a literature review on typical
implementations of data-driven solar heat gain in thermal building and
solar heat plant models.

1.1. Solar gain in thermal building models

The solar gain factor of an enclosed space (often called solar
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A TYPICAL GREY-BOX MODEL
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SOLAR GAIN
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EFFECTIVE WINDOW AREA (gA-value)
ALL CONDITIONS
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IF WE CAN ESTIMATE THE EFFECTIVE WINDOW AREA (gA-value)…

…WE CAN PREDICT THE SOLAR GAIN
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Abstract: In Europe, more and more data on building energy use will be collected in the future as
a result of the energy performance of buildings directive (EPBD), issued by the European Union.
Moreover, both at European level and globally it became evident that the real energy performance of
new buildings and the existing building stock needs to be documented better. Such documentation
can, for example, be done with data-driven methods based on mathematical and statistical approaches.
Even though the methods to extract energy performance characteristics of buildings are numerous,
they are of varying reliability and often associated with a significant amount of human labour,
making them hard to apply on a large scale. A classical approach to identify certain thermal
performance parameters is the energy signature method. In this study, an automatised, nonlinear and
smooth approach to the well-known energy signature is proposed, to quantify key thermal building
performance parameters. The research specifically aims at describing the linear and nonlinear heat
usage dependency on outdoor temperature, wind and solar irradiation. To make the model scalable,
we realised it so that it only needs the daily average heat use of buildings, the outdoor temperature,
the wind speed and the global solar irradiation. The results of applying the proposed method on heat
consumption data from 16 different and randomly selected Danish occupied houses are analysed.

Keywords: thermal building performance; data-driven energy performance documentation and
screening; energy signature; occupants effect on heat consumption

1. Introduction

Today, the building stock suffers from low energy efficiency and significant discrepancies between
anticipated and actual heat consumption known as the performance gap. The performance gap has
been documented in several studies, see, e.g., in [1,2]. In [3], it is stated that only 3% of the building
stock in the EU has energy label A, which corresponds to the level of new buildings. Additionally, the
reliability of the energy labels has been proven to be limited. In a report from 2018 by the Danish Energy
Agency it was stated that 20 to 30% of the Danish building energy labels were wrong. This corresponds
to between 12,000 and 18,000 energy labels that specific year.

The energy efficiency directive (EED) of the European Union (EU) [4] states that all member states
are responsible for the installation of individual energy meters, including heat meters, on all buildings
to the extent that it is technically possible and economically feasible. Furthermore, the new energy
performance of buildings directive (EPBD) lists several requirements to boost the national renovation
strategies [5]. These initiatives are established in order to increase the energy efficiency of the EU
building stock. With the current data collection requirements and the new EPBD, the relevancy of

Energies 2020, 13, 3866; doi:10.3390/en13153866 www.mdpi.com/journal/energies
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ESTIMATED INSULATION LEVEL
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THANK YOU!

Christoffer Rasmussen
chrras@dtu.dk


