8281828

#### Integrating Wind Power Predictability and Locational Flexibility in Power System Balancing

 $f(x+\Delta x)=\sum_{i=0}^{\infty}\frac{(\Delta x)}{i!}$ 

Stefanos Delikaraoglou

PhD student Energy Analytics & Markets group

Modeling and Optimization of Heat and Power Systems Mathematics and Informatics for Intelligent Energy Systems

**DTU Electrical Engineering** Department of Electrical Engineering



## Contents



#### Part I

• Operational Strategies for Predictive Dispatch of Control Reserves [1]

#### Part II

Locational Flexibility and Robust Reserve Procurement [2]

[1] S. Delikaraoglou, K. Heussen, and P. Pinson, "Operational strategies for predictive dispatch of control reserves in view of stochastic generation" in Power Systems Computation Conference (PSCC), Wroclaw, Poland, Aug 18-22, 2014. IEEE, 2014, pp. 1–7.

[2] M. Bucher, S. Delikaraoglou, K. Heussen, P. Pinson and G. Andersson, "On Quantification of Flexibility in Power Systems" (submitted) in PowerTech 2015





#### Part I

• Operational Strategies for Predictive Dispatch of Control Reserves [1]

Part II

• Locational Flexibility and Robust Reserve Procurement [2]

# The problem



- Increasing penetration of stochastic and partly predictable generation
   Increased needs for balancing reserves
- Conventional balancing operation is mainly reactive



# The problem



- Increasing penetration of stochastic and partly predictable generation
   Increased needs for balancing reserves
- Conventional balancing operation is mainly reactive
  - Manual Reserves Schong minimum activation time (i.e. 1h)
    - Designed for thermal plants
    - Unable to follow intra-hour wind fluctuations
  - Wind power predictability not considered
    - Exhausts automatic reserves
    - Endangering grid security Static reserve needs based on N-1 criterion

Reconsider market product definition & the dispatch of manual reserves to find "better" operational strategy.

- 1. **Predictive dispatch of manual reserves** i.e. make use of predictability of wind power (applied by Energinet.dk)
- 2. Consider probabilistic aspects of short-term forecast uncertainty
- 3. Investigate variants of operation strategy, considering alternate **TSO Dispatch strategy** & **product constraints** 
  - a) Respond to intermittency

b) Enable participation other balancing resources e.g. demand response

4. Evaluation based on generic **performance criteria** 

# **Definition of Operational Strategy**



- Link between the available balancing power products and the decisionmaking policy of the TSO
- Different problem formulations to be compared in same evaluation framework

| Operational Strategy  |                     |                            |                  |                       |  |
|-----------------------|---------------------|----------------------------|------------------|-----------------------|--|
| [                     | TSO Policy          | Reserve Product Definition |                  |                       |  |
| Objective<br>Function | Grid<br>Constraints | Operation<br>Timing        | Market<br>Timing | Product<br>Constaints |  |
| $J^M$                 | $h^O g^O$           | $T^O$                      | $T^P$            | $h^P$ $g^P$           |  |

# **Definition of Operational Strategy**





# Predictive Dispatch of Regulating Power

Point forecasts



**Stochastic Dispatch** 





$$h^A(P^A, P^{imb}, P^{M,*}) = 0$$

s.t.

 $g^A(P^A,P^{imb},P^{M,*}) \leq 0$ 

# Optimal schedule of manual reserves

# Remaining imbalances covered by automatic reserves

Scenarios modeling  
Uncertainty  
$$\min_{P^M,P^A} J^{M,st1}(P^M) + \mathbb{E}_s[J_s^{M,st2}(P_s^A)]$$

s.t.

 $h_s(P^M, P_s^A, P_s^{imb}) = 0 \quad \forall s$  $g_s(P^M, P_s^A, P_s^{imb}) \le 0 \quad \forall s$ 

2 - stage stochastic programming problem

Joint optimization of manual & automatic reserves

# Mathematical Formulation – Objective Functions

Objective  $J_I^M$ : Cost minimization

$$\min_{P^{M},P^{A}} J_{I}^{M} = \sum_{t=1}^{T} \left( \sum_{m=1}^{M} \lambda_{t}^{up}(m) p_{t}^{up}(m) - \sum_{n=1}^{N} \lambda_{t}^{dn}(n) p_{t}^{dn}(n) \right) + \sum_{t=1}^{T} \sum_{s=1}^{S} \pi_{s} \left( c^{a,up} P_{t,s}^{a,up} - c^{a,dn} P_{t,s}^{a,dn} \right)$$

Deployment of:

- 1. Manual up/down reserve blocks
- 2. Automatic reserves

Objective  $J_{II}^M$ : Minimum automatic reserves utilization

$$\min_{P^{M}, P^{A}} J^{M}_{II} = \sum_{t=1}^{T} \sum_{s=1}^{S} \pi_{s} (P^{a,up}_{t,s} + P^{a,dn}_{t,s}) dt$$

Expected automatic reserve energy utilization



## **Mathematical Formulation - Constraints**



# Modeling of Uncertainty

12

- Wind uncertainty modeling using scenarios
- Temporal interdependence structure of forecast errors
- Predictive densities approximated by Beta distributions





## Case Study Parameters of Operational Strategies

**Variation** with respect to:

- **2. Lower lead-time** Improved wind forecasts

1. Minimum up time 🛛 More frequent re-dispatching

**3. Objective function Solution TSO** interests during balancing

|                      | S1      | S2      | <b>S</b> 3 | S4         | S5      | <b>S</b> 6 |
|----------------------|---------|---------|------------|------------|---------|------------|
| $T_{min}^{up}$ (min) | 60      | 60      | 60         | 60         | 30      | 30         |
| $T^{lt}$ (min)       | 15      | 30      | 15         | 30         | 15      | 15         |
| Objective            | $J_I^M$ | $J_I^M$ | $J^M_{II}$ | $J_{II}^M$ | $J_I^M$ | $J_{II}^M$ |

Evaluate with respect to **Performance Metrics**:

- 4. Total operating cost
- 5. Maximum power capacity
- 6. Energy utilization

## Simulation setup



# Simulation Results Manual and automatic reserve dispatch

- Period of 1 month
- 5-minute resolution
- Real wind power data from AEMO



# Simulation Results Manual and automatic reserve dispatch



Strategies S3, S4, S6 (obj. function  $J_{II}^{M}$  higher amounts of manual reserves



# **Evaluation of Operational Strategies**

- Performance Metrics
  - Objective function  $J_I^M \blacksquare$  Reduced total balancing costs
  - Shorter lead time Marginal effect on balancing operation
  - Lower minimum up time Highest positive effect on cost & reserve needs (Importance of market rules & product definition)

|                                      |                      | <b>S</b> 1 | <b>S</b> 2 | <b>S</b> 3 | <b>S</b> 4 | S   | 5          | Se              | 5          |
|--------------------------------------|----------------------|------------|------------|------------|------------|-----|------------|-----------------|------------|
|                                      | $T_{min}^{up}$ (min) | 60         | 60         | 60         | 60         | 3   | 0          | 30              | )          |
|                                      | $T^{lt}$ (min)       | 15         | 30         | 15         | 30         | 1   | 5          | 15              | 5          |
|                                      | Objective            | $J_I^M$    | $J_I^M$    | $J^M_{II}$ | $J^M_{II}$ | J   | $_{I}^{M}$ | $J_I^{\Lambda}$ | A<br>I     |
| Perfo                                | rmance Metric        | <b>S</b> 1 | <b>S</b> 2 | <b>S</b> 3 | S          | 4   | S          | 5               | <b>S</b> 6 |
| Total Cost (×10 <sup>3</sup> $\in$ ) |                      | 652.83     | 662.29     | 907.0      | 01 909     | .51 | 602        | 2.49            | 810.58     |
| Max                                  | $P_t^{up}$ (MW)      | 46.27      | 46.36      | 48.0       | 9 47.      | 97  | 46         | .95             | 53.73      |
| Max                                  | $P_t^{dn}$ (MW)      | 52.69      | 54.29      | 76.2       | 5 79.      | 51  | 66         | .39             | 80         |
| Max                                  | $P_t^{a,up}$ (MW)    | 35.94      | 37.26      | 65.2       | 0 73.      | 13  | 30         | .30             | 39.25      |
| Max                                  | $P_t^{a,dn}$ (MW)    | 104.76     | 102.37     | 100.7      | 3 96.      | 69  | 105        | 5.97            | 103.93     |
| $E^M$                                | (GWh)                | 2.17       | 2.21       | 2.53       | 2.5        | 56  | 2.         | 23              | 2.54       |
| $E^A$                                | (GWh)                | 1.25       | 1.23       | 1.06       | 5 1.0      | )5  | 1.         | 04              | 0.86       |

17 **DTU Electrical Engineering, Technical University of Denmark** 

# Summary & Conclusions

- Framework for the definition of operational strategies and evaluation using performance criteria
- Variations of predictive operational strategies to cope with increased wind uncertainty
- Trade-offs balancing cost vs. reliability
- Limited effect of shorter lead time
- Significant impact of balancing product definition (Min Up Time) on power system flexibility

# Summary & Conclusions

- Framework for the definition of operational strategies and evaluation using performance criteria
- Variations of predictive operational strategies to cope with increased wind uncertainty
- Trade-offs balancing cost vs. reliability
- Limited effect of shorter lead time
- Significant impact of balancing product definition (Min Up Time) on power system flexibility
- Future work:
  - Consider "Flexibility" w.r.t. further variations on balancing products (e.g. energy & ramping)
  - Network representation
  - Different time resolution dispatch optimization & simulation

## Contents



Part I

• Operational Strategies for Predictive Dispatch of Control Reserves [1]

Part II

• Locational Flexibility and Robust Reserve Procurement [2]

# Goals

- Determining (explicitly) the operational flexibility that is available at a certain point in the system
  - helpful in planning, operation, investment, visualization (compared to stochastic approaches)
- Characterizing the uncertainty arising at some bus in same metric
  - comparable: explicit information about flexibility needs (compared to «scenarios»), combination of uncertainty and flexibility in one framework
- Using explicit information directly in a robust procurement process
   Less computational intensive than stochastic optimization
- Unified/applicable to different types of units using common metric

# Definitions

#### • Operational flexibility:

The ability of a power system to counteract a disturbance sufficiently fast in order to keep the system secure.

#### Metric:

- Ramping rate R
- Power capacity P
- Energy E



• Locational flexibility:

Operational flexibility that can be accessed at a given bus in the grid.



# Locational Flexibility Characterization = Flexibility Set

- Determine flexibility of every single unit.
   Formulation based on Power Nodes [3] over multiple time steps.
- 2. Attach a «flexibility drain» = generic disturbance at bus of interest
- 3. Impose system-wide constraints: transmission limits, power balance
- From 1.-3.: Build set of feasible system states.
   Find limits of the disturbance by projecting on the dimensions of the «flexibility drain»

[3] K. Heussen, S. Koch, A. Ulbig, and G. Andersson, "Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation," Systems Journal, IEEE, vol. 6, no. 1, pp. 140–151, March 2012.



## Locational Flexibility Characterization = Flexibility Set

Flexibility set F = all possible set points of the system that are stable

State variables of flexible units

State variables of «flexibility drain»

$$F = \{ (f_d, f_s) \in \mathbb{R}^{n_d + n_s} | C_s f_s + C_d f_d \le b \}$$

Limitations of system:

- Grid constraints

. . .

• Generation constraints

24 DTU Electrical Engineering, Technical University of Denmark



# Explicit Formulation of Locational Flexibility (Projection)

$$F_d = \{ f_d \in \mathbb{R}^{n_d} | \exists f_s, (f_d, f_s) \in F \} \\ = \{ f_d \in \mathbb{R}^{n_d} | Gf_d \leq g \}$$





## Case Studies (I)



| Туре       | Bus | $E_{max}$ | $P_{min}/P_{act}/P_{max}$ | $R_{min}/R_{max}$ | Cost E/P/R |
|------------|-----|-----------|---------------------------|-------------------|------------|
| Storage    | 1   | 0.05/0.1  | 0.05/50%/1                | -1/1              | 0/10/1     |
| Wind farm  | 2   | -         | 0/1/1                     | -1/1              | 0/2/1      |
| Conv. Gen. | 3   | -         | 0/1/2                     | -0.05/0.05        | 0/3/50     |
| Load       | 3   | -         | 2                         | -                 | -          |

| From-To Bus | Capacity (p.u.) |
|-------------|-----------------|
| 1-2         | 0.3-0.45        |
| 1-3         | 0.3-0.45        |
| 2-3         | 0.7             |

#### 26 DTU Electrical Engineering, Technical University of Denmark



## Case Studies (I) – Locational Flexibility at Bus 2



Possible combinations of power disturbances and ramping rates at bus 2 for three time steps  $\sim$  Bounds of evolution of a forecast error

# Reserve Procurement with Explicit Flexibility Needs

- Goal: Procure sufficient capacity for re-dispatching considering explicit flexibility needs.
- Possible Applications:
  - Operation
    - Sufficient capacity available for predicted situation?
  - Procurement/Planning
    - As addition to current procurement mechanisms, to check whether sufficient capacity for buses with explicit flexibility needs is available
    - Incentive for wind park to limit uncertainty by itself
  - Investment
    - Where to invest in flexibility

## Reserve Procurement – Robust Optimization (I)

Reserves  

$$\min_{\Delta b_{i}, f_{s}} C_{prod}^{T} \Delta b_{i} + \mathcal{L}(\Delta b_{i})$$
s.t.  $\Delta b_{i}^{min} \leq \Delta b_{i} \leq \Delta b_{i}^{max}$ 

$$\begin{split} \mathcal{L}(\Delta b_i) &= \max_{\delta} & \min_{f_s} C_{op}^T f_s & \text{Day-ahead dispatch} \\ & \text{s.t. } C_s f_s + C_d \delta \leq b_0 + \Delta b_i \\ & f_s \geq 0 \\ & \text{s.t. } & \delta \in \mathcal{W} & \text{Uncertainty set} \end{split}$$

## Reserve Procurement – Uncertainty Set (I)

Express flexibility needs in [R,P,E] metric







## Reserve Procurement – Uncertainty Set (II)



31 DTU Electrical Engineering, Technical University of Denmark

## Reserve Procurement – Robust Optimization (II)

$$\mathcal{L}(\Delta b_i) = \max_{\delta} \min_{f_s} C_{op}^T f_s$$
s.t.  $C_s f_s + C_d \delta \le b_0 + \Delta b_i$ 
 $f_s \ge 0$ 
s.t.  $\delta \in \mathcal{W}$ 

$$\bigcup_{\mu} \mathsf{DUAL}$$

$$\max_{\mu} (C_d \delta - \Delta b_i - b) \mu$$
s.t.
 $-C_s^T \mu \le C_o^T p$ 
 $\mu \ge 0$ 

## Reserve Procurement – Robust Optimization (III)

Bilinear Term  $\min_{\Delta b_i} C_{proc}^T \Delta b_i \quad + \max_{\delta,\mu} C_d \delta \mu + (\Delta b_i - b) \mu$ s.t.  $-C_s^T \mu \leq C_{op}^T$  $\mu \geq 0$ s.t.  $\Delta b_i^{min} \leq \Delta b_i \leq \Delta b_i^{max}$ 

## Reserve Procurement – Robust Optimization (IV)

- $\mathcal{W}$  Polyhedral set  $\blacksquare$  Optimal solution one of the vertices
- $\Delta b_i$  not in the bilinear problem  $\blacksquare$  Finite number of vertices





## Case Studies (II) – Procurement Cost vs. Storage and Curtailment



Upper limit of maximum disturbances at bus 2 for different storage capacities and curtailment possibilities.

## Case Studies (III) – Uncertainty Scaling



Scaling factor of the uncertainty polytope vs. curtailment and storage size

## Case Studies (IV) – Maximal Flexibility



Maximal flexibility for three different transfer capacity levels.

# Summary & Conclusions

- Locational flexibility to define the ability of the system to counteract a certain disturbance at a given node in terms of [R,P,E].
- Unified framework to quantify and compare the available flexibility with the forecast uncertainty.
- Robust procurement algorithm to guarantee sufficient locational flexibility for the worst-case realization of the uncertainty.





## Thank you for your attention !

# **Questions?**

stde@dtu.dk

**39 DTU Electrical Engineering, Technical University of Denmark**