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Elon Musk’s vision of an energy system

Source: https://www.tesla.com/solarroof

e How can we model this system?

e How can we control it in a smart way?
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Our vision of a smart home energy system

An energy system based on renewable energy sources

Solar panels

Battery
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Goal for the smart home energy system

Heat pump model:

ihp = Ahp,cxhp + Bhp,cuhp + Ehp,cdh;m
Yhp = C’hp,c-%'hp'

EV battery model:

Tey = Aev,cxev + Bev,cuev + Eev,cdeva

Yev = Cev,cTev-

—>

Stationary battery model:

That = Abat,cxbat + Bbat,cubat + Ebat,cdbata
Yvat = Cbat,oxbat'
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Smart home en-
ergy system model:

T = A.x + Beu+ Ed,
y = Cezx.
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Characterization of a smart home

M

Our idea of a smart home

@ Heat pump input power is regulated such that indoor temperature is kept
between pre-specified intervals

@ EV battery is charged such that a pre-defined driving pattern is possible

© Stationary battery is discharged to provide power for heat pump, to charge EV
battery and to sell energy

@ Stationary battery is charged by power from photo voltaic cells and purchasing
power
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Models of the devices in the energy system

Steps @-@ are accomplished using an economic model predictive controller
(EMPC) minimizing electricity costs

Linear state space models

Each device is modeled as a continuous-time linear state space model:

&= Acxr + Beu+ E.d,
y=Cex.

Here x is the state-, u is the manipulated-, d is the disturbance- and y is the
output-variable.

® The heat pump is modeled as a ground source based heat pump for a floor
heating system with constant coefficient of performance [1]

e The batteries are modeled as simple integrators with transfer losses [2]

@ R. Halvgaard, N. K. Poulsen, H. Madsen, and J. B. Jgrgensen.
Economic model predictive control for building climate control in a smart grid.
In 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pages 1-6, Jan 2012.

@ Rasmus Halvgaard, Niels Poulsen, Henrik Madsen, John Jgrgensen, Francesco Marra, and Daniel Esteban Morales Bondy.
Electric vehicle charge planning using economic model predictive control.
2012 IEEE International Electric Vehicle Conference, IEVC 2012, 03 2012.
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State space model of the smart home energy system

M

Coupling in the state space matrices

Variable definitions:

T = (xhp; Levs xbat) y U= (Uhp§ Uev; u(_)‘;t; ul;zt) d= (dhp; dev; dbat)
Y = (Ynp; Yev: Yoat)

State space matrices:

Appe 0 0 Bpe O 0 0
A= 0 Acyc 0 , B. = 0 Beye O 0
0 0 Abat,c — Cbat —Cbat Cbat —Cbat
Ehp.c 0 0 Chp,c 0 0
Ec = 0 Eev,c 0 ) Cc = 0 Cev,c 0
0 0 Cs * Cpat 0 0 Obat,c

Where dp,; = [solar radiation power],

hargi ffici
[c[bai%mg € |C|e.r;c]y]7 ¢s = [#photo voltaic cells] - [cell efficiency].
attery capacity
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State space model of

the smart home energy system

Charge

Purchase

electricity
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Figure: Overview of the coupling in the smart home energy system.
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Economic MPC

Optimization problem

Objective function:

N-1

13151 o1 = E Cu,kUk + PoVk41
’ k=0

Discretized state space model:  s.t. xpy1 = Axy + Buy + Edy

Input constraints:

Soft output constraints:

Slack variable constraint:

yr = Cxy,

Umin,k < Uk < Umax,k
AUmin,k < AUk < Aumax,k

Ymin, k < Yr + Uk

Ymax, k > Y — Uk

OS’Uk

keN
EeNT

keN
keN

EeNT
EeNT

EeNT
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With N ={0,..., N — 1} and Nt = {1,..., N}, where N is the prediction
horizon, ¢, . are electricity prices and p, is a penalty parameter.
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Challenge for the heat pump

M

Choice of the penalty parameter

e When the penalty parameter p, is chosen too small the controller will not turn
on the heat pump

e When p, is chosen too large the controller will avoid violating the lower
temperature constraint leading to higher electricity costs

Solution approach

We introduce multi-level soft constraints such that temperature violations are
tolerated to some degree:

SR
8 -— - -——— -——— Indoor temp.

cool= A A = = :Constraints 2
o

g N e Borderline soft constraints
S

P (R S, S, SO, S A N TS S AU
3
,E 18
= 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00

0:00 12:00 0:00

Figure: Illustration of multi-level soft constraints. Violations below the borderline
are penalized harder than above.
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Enhance heat pump performance

Penalty = 50

Penalty = 5-10~*

s @ @ =
5 & & o
3

0 0
0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

Figure: Heat pump performance for different penalty parameters. SSC = standard
soft constraints, MLSC = multi-level soft constraints.
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Challenge for short prediction horizons

Solution: Cost-to-go term

Challenge

When using a short prediction horizon The solution is to account for the
there is a chance that the controller value of stored energy in the end of
does not turn the device on, which can | the prediction horizon:

lead to higher electricity costs later
¢2 = ¢1 + [cost-to-go term]

o
S

SOC [%]
s

o

I
N
1

6:00 12:00 18:00 0:00 6:00 12:00 18:00

Charge power kW]
o 2
8

Figure: Battery performance in presence of a constant discharge of 0.1 kW. ¢ =
standard objective function, ¢5 = objective function with cost-to-go term.
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Performance of the smart home energy system

P )
N R

Smart Home Energy System

Heat pump
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Figure: Illustration of EMPC performance.
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Contributions

M

We formulated:

e A simple state space
model of a smart home
energy system

Source: https://www.tesla.com/solarroof

We controlled the smart home energy system by an economic MPC, where
we used

o Multi-level soft constraints for more intuitive tuning

e An objective function with a cost-to-go term to account for the value of
stored energy in the end of the prediction horizon
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Thank you

for your attention!

Contact information:
Hjgrdis Amanda Schliiter, hjsc@dtu.dk
John Bagterp Jgrgensen, jbjo@dtu.dk
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Additional slides

M

Heat pump model

PO

T

v ],

Heat Pump [ C, o Thw (UA)wy _!Cp,f T

Condenser tank
T/
a
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Additional slides

M

Heat pump model

Energy balances:

Cp,rTT - Rf'r‘ - Rra + (]- - p)()bsa
Cp s Ty = Ruf — Ryr + pds,
Cp,wTw = an - waa

Heat transfer rates:
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Additional slides
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Heat pump model

18

Variable Unit Description
T, °C | Room air temperature
Ty °C | Floor temperature
Ty °C | Water temperature in the floor heating pipes
T, °C | Ambient temperature
T, °C | Ground temperature
W, W Heat pump compressor input power
s W | Solar radiation power: Solar radiation (W/m?)
° times effective window area (2.9 m?)
DTU Compute 20.08.2019 IEEE Conference On Control Technology And Applications
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Additional slides

M

Battery model

(= Qi (n*PS —n"P;).

n

Description

¢ State of Charge (SOC)
PF | Charge power

P | Discharge power

nt | Charging efficiency

n~ | Discharging efficiency
@, | Nominal battery capacity

19 DTU Compute 20.08.2019 IEEE Conference On Control Technology And Applications



Additional slides

Multi-level soft constraints formulation
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N-1
_ Z / 1/ 1 2/ 2
(b - (cu7kuk + Py Uk-i—l + Py Ulc+1)
k=0

1 2
Ymin, k S Yk + (% + )

1
Ymax,k > Yk — Uiy

1 1
0 S Vg S Umax>
2
0<vy.
v
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Additional slides

Value of stored energy at the end of the prediction horizon
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Formulation:

¢2 = ¢1 — (ENTN — CoTo),

where ¢y and ¢y is the value of stored energy at the start and the end of the
prediction horizon.
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