Modelling tools for energy planning and energy system integration

Sara Ben Amer-Allam, sbea@dtu.dk

EERA JPI ISI meeting November 2nd, 2016 DTU Lyngby, Denmark

DTU Management Engineering

Department of Management Engineering

Contents

o DTU

o Energy planning

- o Energy system models
- Selected modelling tools: users, issues solved, representation
- o Case study: modelling of Sønderborg, DK
- o Challenges of energy system models

o Summary

Technical University of Denmark (DTU)

- 5 832 staff, 10 631 students, 1 406 PhD students
- My division: Systems Analysis at Management Engineering dep.
 - 30+ years experience in energy systems modelling and economic assessment of energy technologies
 - working for Danish authorities on forecasts and planning of the energy system, development of energy markets and response to climate change
 - international network: IPCC, EERA, EU Research Programmes, Climate-KIC, Nordic collaboration

3 DTU Management Engineering, Technical University of Denmark

What is energy planning?

- Process of developing future energy system setup and policies, focusing on: sustainability, resilience, flexibility, efficiency, affordability etc.
- Incorporates: energy policy, energy economics, engineering, social science
- Energy system modelling allows developing techno-economic scenarios for energy planning facilitation

4 DTU Management Engineering, Technical University of Denmark

Energy system models

Selected modelling tools

	Developers and users
Balmorel	DTU, Danish Energy Association, China National Renewable Energy Centre
EnergyPLAN	Aalborg University, PlanEnergi
	ENID Danich district boating companies
energyPRO	EIVID, Dahish district heating companies
Sifre	Danish TSO Energinet.dk and external collaborators, e.g. DTU
TIMES-DK	DTU, Danish Energy Agency

7 DTU Management Engineering, Technical University of Denmark

Sectoral representation and issues solved

	Sectoral representation	E.g. issues solved
		Electricity markets; expansion
Balmorel	Electricity + heat (+ EVs)	of DH
		100% RES energy systems;
EnergyPLAN	Electricity+heat+transport	energy storage
	Flexible: electricity + heat,	CHP plants on the spot market;
energyPRO	(transport as "energy plant")	compressed-air energy storage
		Electrolysis and biomass
		conversion in Sønderborg,
Sifre	Electricity+heat+transport+gas	Denmark
		Renewables in heating/cooling
TIMES-DK	Electricity+heat+transport	systems in 6 EU countries

Implementation and optimization

	Implementation	Optimization type
	Linear Programming in	
Balmorel	GAMS, solvers e.g. CPLEX	Total cost minimization
		Operation cost
		minimization; technical or
		market-economic
EnergyPLAN	Delphi Pascal	simulation
		User-defined or auto-
		calculated operation
energyPRO	Delphi	strategy
	Mixed Integer Linear	Operation cost
Sifre	Programming in C#	minimization
	GAMS programming, VEDA	
TIMES-DK	front- and back-end, Excel	Total cost minimization

Geographical and temporal representation

	Geographical representation	Temporal representation
		Hourly over a year - can be
Balmorel	Flexible; regions and areas	aggregated
	Flexible	Hourly over a year
EnergyPLAN		
		Calculation steps:10-30 min, 1h;
		optimisation period: month or
energyPRO	Flexible	year
	Floviblo	
Sifro		Hourly over a year
Sille		Hourry over a year
		32 time slices: depending on
	Flexible	availability, demand profiles,
TIMES-DK		electricity import/export

Case study: Sønderborg, Denmark

- Tool: Sifre
- Electricity, heat and transport (as energy service)
- Year 2029, hourly resolution
- RQ: How can Sønderborg become a low-CO₂ emitting municipality in 2029 in an energy efficient and cost-effective way, while limiting biomass use to locally available resources
- Energy system integration:
 - conversion technologies: large-scale heat pumps, biogas production and methanation, thermal gasification, electrolysis and transport fuel synthesis
 - comparison of: total system socio-economic costs, CO2 emissions, biomass consumption and energy conversion efficiency

12 DTU Management Engineering, Technical University of Denmark

Challenges of energy system models

- Demand side optimization rarely modelled (usually by manually changing the demand and analyzing the resulting impact)
- Accounting for air pollution other than CO2: e.g. particulate matter from biomass
- Global optimization
 - one-way direction: but how to represent and "optimize" prosumers?
 - behaviour: how to model people's choices?
- Developing and soft-linking agent-based models with energy system models?

Summary

- Energy system modelling allows developing techno-economic scenarios for energy planning facilitation
- Main differences:
 - Balmorel and TIMES-DK are investment and operation optimization tools; Sifre, energyPRO and EnergyPLAN are operation optimization tools
 - Various sectoral and technology representation
- Hourly time series suitable for modelling flexibility (intermittent renewables, thermal storage)
- Energy models/modelling tools
 - all are flexible enough for many applications
 - each has its strengths and weaknesses = some more suitable for selected research questions than others

Summary (2)

- Main challenges
 - accounting for demand side flexibility
 - modelling more air pollution types
 - quantifying and modelling people's behavior
- Developing and soft-linking agent-based models with energy system models?

Thank you for your attention!

e-mail: <u>sbea@dtu.dk</u>

