
Copyright © 2013 Georgia Tech

A US perspective on energy flexibility:

Energy Neighborhoods and DC reduction

A BEM fidelity perspective

Godfried Augenbroe
School of Architecture, Georgia Institute of Technology, Atlanta. USA



Energy n’hoods



BEM: Scale and scope



BEM: Scale and scope



Overview of some efforts in our lab

1. Chicago lab retrofit
2. A campus model
3. Microgrid optimization
4. The London Westminster model
5. The Manhattan model
6. Resilient communities with multi-layered intelligence



1. Chicago Loop retrofit 
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2. Campus network

Lee, sang Hoon (2012). Campus scale energy planning and management. PhD thesis Ga Tech.

Graph of:
• Nodes: energy consumers 

and suppliers
• Arcs: exchange/sharing 

modes



Lee, sang Hoon (2012). Campus scale energy planning and management. PhD thesis Ga tech.



3. Microgrid optimization

Overview of the integrated optimization framework. DEA searches the decision variable
space of the demand model, which interacts with the supply model through six exchange variables.
A decision maker defines the weather, grid outage and EEMS scenario.

DER-CAM

Michael Street (2016), Integrated performance based design of communities and distributed generation. 
PhD Dissertation Georgia Tech, 2016.



4. London Westminster: 1000+

• EECi project at Un. Cambridge: Combined building and traffic 
emission model in urban canopy dispersion model



• Urban heat island (UHI) effect: larger ambient 
temperature fluctuations in urban area

• UHI model used, following Sun and Augenbroe (2014): 
▫ The Town Energy Budget (TEB) model (Masson 

2000) 
▫ The Interaction Soil–Biosphere–Atmosphere (ISBA) 

model (Noilhan and Planton 1989; Noilhan and 
Mahfouf 1996)
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5. Very large scale urban models 10,000

Quan, S.J., Li, Q., Augenbroe, G., Brown, J., & Yang, P.-J. (2015). Urban Data and Building Energy Modeling: A GIS-
Based Urban Building Energy Modeling System Using the Urban-EPC Engine (Ch 24). In S. Geertman, J. Ferreira
Joseph, R. Goodspeed, & J. Stillwell (Eds.), Planning Support Systems and Smart Cities SE - 24 (pp. 447–469). 



• Temporal and spatial characteristics of urban-scale building energy

Above: monthly total building energy 
consumption of Manhattan
Right: spatial building total energy 
consumption across Manhattan

Urban outcomes



6. Connected, resilient communities

Gustavo Carneiro (2017), Integration of buildings and DER in neighborhood energy models Georgia Tech PhD thesis



The consensus road forward

Step 1: Automatic generation of synthetic environments from 
- GIS
- BIM
- Census (PUMS)
- Other…..

Step 2: Population of building energy models

Step 3: Add urban climate parameters

Step 4: Add “light touch”” calibration based on smart meter data

One question is usually avoided!



The unanswered question

What model fidelity is adequate for the individual building nodes? 

Typical choices:
• Statistical (Regression, Surrogate, Gaussian Process)
• Reduced order (aggregate model with zonal mass-nodes): EPC
• Fully dynamic, from retail (IES, EnergyPlus) to customized
• Research (Modelica)

Ramifications:
- How to handle p2p dynamics (co-simulation)
- At what scale does the individual still matter

Obviously “it all depends what you want to achieve”!



The question is relevant

Modeling effort

Error
(Model 

Discrepancy)

“Lazy modeling leads to oversizing”

“Over-engineered models have no pay back”

Reduced
order

ModelicaEnergyPlus

Question: How does urban scale modeling amplify these issues?



Let’s address this question in a study

Goal of study: Select optimal set of measures that reduce electricity cost
FOR ONE BUILDING AT A TIME
• With special attention on: demand charges (DC)
• In different DC rate structures (by local utilities)

Yuna Zhang, Optimal strategies for demand charge reduction by commercial building operators. PhD 
dissertation Georgia Tech, June 2017



Building 
Model
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Type Office Hospital Retail
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Methods To Reduce Demand Charges
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EEM and EFM (parameterizations)

Goal: select EEM+EFM set with highest NPV
• For given building type in given location
• Under given specific electricity rate structure

Building Parameters
Value

Cost 
Min Max

Energy Efficiency Intervention (EEM)

Infiltration Rate(m3/h/m2) 0.2 0.8 $4-$10/m

Wall Insulation Thickness (mm) 0 100 $10-$17/m2

Emissivity of Roof 0.4 0.9 $10-$22/m2

Solar Reduction Factor 0.8 1 $45-$65/each window

Window SHGC 0.25 0.8 $450-$650/each window

Energy Flexibility
Intervention (EFM)

Temperature Control 0 2.5 Productivity loss

Lighting Dimmer 0 30 $300/each dimmer

Voltage Throttling 0 1 Productivity loss

Schedule Adjustment 0 1 $0

Area of the PV System (m2) 0 200 $520 per m2



Deterministic Optimization
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Five electricity rate structures (cases)



Some results
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Some inspections and consequences

How do we know whether the results are valid?

Will a higher fidelity model lead to different optimal sets of measures??

One answer: rebuild the model with a higher fidelity tool and compare

Better answer: test the influence of the model discrepancy on outcomes.

Even better answer: test the influence of the model discrepancy on decisions.

This requires:

• Develop risk criteria in the decision making; develop the measures
• Determine how model discrepancy affects risk measures

Consequence: we need to recognize uncertainties in parameters AND model



A view on simulation

Definition: Perform an experiment on a virtual or real artifact
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Parameter and Scenario uncertainties

Uncertainty Parameter Range

Energy Model Parameter

U-value of Wall -10% ~ +10%

U-value of Window -10% ~ +10%

Infiltration Rate -10% ~ +10%

Scenario Parameters
Occupancy Density -20% ~ +20%

Appliance Density -20% ~ +20%

Cost Factors

Productivity Loss Bivariate Kernel Density

Product Cost -10% ~ +10%

Future Demand Charge Rate -2% ~ +2%



UA and SA of Peak Demand
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 Baseline = 204.617

Uncertainty analysis



Uncertainty analysis of NPV

NPV results of optimal EEM and EFM 
under uncertainty for the office building 

case 5



Stochastic Optimization
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Optimization criteria

(1) 𝛉𝛉∗= arg max
θ∈Θ

E NPV 𝛉𝛉, 𝛏𝛏

(2)𝛉𝛉∗ = arg max
𝜃𝜃∈Θ

𝐸𝐸 𝑁𝑁𝑁𝑁𝑁𝑁 𝜽𝜽, 𝝃𝝃 & 𝜎𝜎 𝑁𝑁𝑁𝑁𝑁𝑁 𝜽𝜽, 𝝃𝝃 ≤ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

(3)𝛉𝛉∗ = argmax
𝜃𝜃∈Θ

𝑁𝑁𝑁𝑁𝑁𝑁 𝜽𝜽, 𝝃𝝃 & 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁𝑁𝑁 𝜽𝜽, 𝝃𝝃 ≥ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙



Result with the three criteria

Stochastic optimization criterion

N
PV



Back to the major question
How do we validate the building energy model (for our research purpose)?

• Focus on MFU
• Relate to other relevant uncertainties

Validity question: will stakeholder decisions be influenced by model 
fidelity, i.e. do the risk measures change such that stakeholder will make 
other decision.

In our case we proceed as follows to answer this question:
• We start from the low fidelity tool
• Quantify MFU by comparing to high fidelity model: “delta” in power(t)
• Develop a statistical model of delta (time series) and add to our model
• Redo the stochastic optimization
• Inspect the impact on the relevant risk measures



The result for delta(t)

Delta [kW] between EPC and EnergyPlus

Time series fit of delta (t) 

Two steps:
Step 1: without tuning  delta
Step 2: after tuning  deltaC



Repeat stochastic optimization
Findings: 
• With delta, in some cases different optimum
• With deltaC, in all cases same optimum (when using criterion 1)

Distribution with delta=0
(original case)

Distribution with delta

Distribution with deltaC



Impact of delta on risk measures
Question: will the added delta lead to rejecting an optimum set that was acceptable 
Example criterion 3: P(NPV > 0.9M) > .8
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What does it all mean?

Work is continuing:
• SA used to rank delta and deltaC against other uncertainties
• Apply to more cases; draw general conclusions

For now the conclusions are:
- Our reduced-order model is valid for power studies
- Some fine tuning is sometimes necessary

We will apply the same technique to multi building nodes (each has its 
own delta)

Since the reduced order tool is simple but adequate, we are developing 
a do-it-yourself tool for building operators (totally Excel based)



General conclusions

Many urban energy model developments choose a BEM based on a 
hunch rather than on inspection of validity

Many current neighborhood energy models are over-engineered

If less is known about the buildings, the role of MFU becomes less 
important (rather self evident but now quantifiable)

The introduction of risk measures is necessary to conduct validity tests

The DC reduction optimization can be packaged as a DIY tool



Thanks for your listening!

Fried@gatech.edu

mailto:Fried@gatech.edu


Uncertainty Analysis
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ModelCenter - Model Integration Environment

Scaled up to GURA-Workbench (EnergyPlus)
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Augenbroe, G., Y. Zhang, J. Khazaii, Y. Sun, H. Su, B. D. Lee, and J. Wu, "Implications of the Uncoupling of Building and HVAC 
Simulation in the Presence of Parameter Uncertainties", 13th International Conference of the International Building 
Performance Simulation Association, Chambery, France, 08/2013.

Lee, B. D., Y. Sun, G. Augenbroe, and C. J. J. Paredis, "Towards Better Prediction of Building Performance: A Workbench to 
Analyze Uncertainty in Building Simulation", 13th International Conference of the International Building Performance 
Simulation Association, Chambery, France, 08/2013.
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