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Overview of some efforts in our lab

Chicago lab retrofit

A campus model

Microgrid optimization

The London Westminster model

The Manhattan model

Resilient communities with multi-layered intelligence
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1. Chicago Loop retrofit
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Scenarios

ACIEREIEREER  “Policy and Planning”

Policy & Scenario Evaluation
( Normative Model)

Heo Y.S., G. Augenbroe, D. Graziano, R.T. Muehleisen, L. Guzowski (2015). Scalable methodology for large scale %

building energy improvement: Relevance of calibration in model-based retrofit analysis. Building and Environment 87,
342-350
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2. Campus network
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3. Microgrid optimization
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Overview of the integrated optimization framework. DEA searches the decision variable
space of the demand model, which interacts with the supply model through six exchange variables.
A decision maker defines the weather, grid outage and EEMS scenario.

—
Michael Street (2016), Integrated performance based design of communities and distributed generation.
PhD Dissertation Georgia Tech, 2016. Cp
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5. Very large scale urban models 10,000

W - e Urban heat island (UHI) effect: larger ambient
temperature fluctuations in urban area
* UHI model used, following Sun and Augenbroe (2014):
= The Town Energy Budget (TEB) model (Masson
2000)

= The Interaction Soil-Biosphere—Atmosphere (ISBA)
model (Noilhan and Planton 1989; Noilhan and
Mahfouf 1996)

A
Simplified Feed Boundary
into into condition
Detailed GIS Urban TEB-ISBA
Energy model ]
morphology parameters UHI model
* Individual * Urban canyon » Calculated * Adjusted
building height hourly actual energy
geometry * Urban canyon ambient consumption
aspect ratio temperature under UHI
» Coverage of effect
vegetation
area
» Coverage of
built area

—~
Quan, S.J., Li, Q., Augenbroe, G., Brown, J., & Yang, P.-J. (2015). Urban Data and Building Energy Modeling: A GIS-
Based Urban Building Energy Modeling System Using the Urban-EPC Engine (Ch 24). In S. Geertman, J. Ferreira Gr
Joseph, R. Goodspeed, & J. Stillwell (Eds.), Planning Support Systems and Smart Cities SE - 24 (pp. 447-469).



Urban outcomes

e Temporal and spatial characteristics of urban-scale building energy
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6. Connected, resilient communities

Preliminary Results — Load Flexibility orae EnerayFrosumers:
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* Load tracks PV with in safety constraints while reducing
number of cycles

* Load is ~3X the maximum capacity of the PV generation
capacity
* Resolution of load controllability is carefully chosen

* 4 Packaged RTUs controlled to provide renewable support

Wind farm u .—' "‘JJ

- intermittent generation

Gustavo Carneiro (2017), Integration of buildings and DER in neighborhood energy models Georgia Tech PhD thesis Gp



The consensus road forward

Step 1: Automatic generation of synthetic environments from
- GIS
- BIM
- Census (PUMS)

Step 2: Population of building energy models

Step 3: Add urban climate parameters

Step 4: Add “light touch™ calibration based on smart meter data

One question Is usually avoided!



The unanswered question

What model fidelity is adequate for the individual building nodes?

Typical choices:

« Statistical (Regression, Surrogate, Gaussian Process)
 Reduced order (aggregate model with zonal mass-nodes): EPC
* Fully dynamic, from retail (IES, EnergyPlus) to customized

* Research (Modelica)

Ramifications:
- How to handle p2p dynamics (co-simulation)

- At what scale does the individual still matter

Obviously “it all depends what you want to achieve”!



The question is relevant

Error
(Model
Discrepancy)

un

T\-..._

, Modeling efl

Reduced EnergyPlus Modelica
order

“Lazy modeling leads to oversizing”
“Over-engineered models have no pay back”

Question: How does urban scale modeling amplify these issues?



Let’s address this question In a study

Goal of study: Select optimal set of measures that reduce electricity cost
FOR ONE BUILDING AT ATIME

* With special attention on: demand charges (DC)

* In different DC rate structures (by local utilities)

Yuna Zhang, Optimal strategies for demand charge reduction by commercial building operators. PhD r
dissertation Georgia Tech, June 2017



Application cases
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Model
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Methods To Reduce Demand Charges
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EEM and EFM (parameterizations)

Value
Building Parameters : Cost
Min Max
Infiltration Rate(m3/h/m?) 0.2 0.8 $4-$10/m
Wall Insulation Thickness (mm) 0 100 $10-$17/m?
Energy Efficiency Intervention (EEM) Emissivity of Roof 0.4 0.9 $10-$22/m?
Solar Reduction Factor 0.8 1 $45-$65/each window
Window SHGC 0.25 0.8 $450-$650/each window
Temperature Control 0 25 Productivity loss
Lighting Dimmer 0 30 $300/each dimmer
Iﬁ;i:i{};i]x(igl:i% Voltage Throttling 0 1 Productivity loss
Schedule Adjustment 0 1 $0
Area of the PV System (m?) 0 200 $520 per m?

Goal: select EEM+EFM set with highest NPV
« For given building type in given location
* Under given specific electricity rate structure



Deterministic Optimization

——————————————

Parameter Space TechOPT : Minimize NPC

Energy Cost
Demand
Charge Cost Optimal
Mix
Investment
Cost

ey

Other costs



Five electricity rate structures (cases)

DC Threshold | Demand Charge Rate (S/kW) Energy Rate ($/kWh) | Coincident
Rate Structure TOU | DR
(kW) : : Peak
Summer Winter Summer Winter
Case 1 GP PLM-11 35-500 8.24 Table 4.1 No No | No
Case ) PGE A-10 Non TOU 200-499 16.78 945 0.16492 0.12832 N N N
B2 " PGE A-1 Non TOU 75-200 0 016192 | 0.12832 ° N
PGE A-10 TOU 200-499 16.78 9.45
Case 3 Table 4.3 No Yes | Yes
PGE A-1 TOU 75-200 0
SCE TOU-GS-3 Option A 200-500 17.81 17.81
Case 4 : No Yes | No
SCE TOU-GS-2 Option A 20-200 15.48 15.48 Table 4.4
SCE TOU-GS-3 OptionB 200-500 17.81+17.42+3 .43 17.81 '
Case 5 : Yes Yes | Yes
SCE TOU-GS-2 Option B 20 -200 15.48+17.32+3.38 15.48




Some results
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Some inspections and consequences

How do we know whether the results are valid?

Will a higher fidelity model lead to different optimal sets of measures??

One answer: rebuild the model with a higher fidelity tool and compare

Better answer: test the influence of the model discrepancy on outcomes.
Even better answer: test the influence of the model discrepancy on decisions.
This requires:

» Develop risk criteria in the decision making; develop the measures
» Determine how model discrepancy affects risk measures

Consequence: we need to recognize uncertainties in parameters AND model



A view on simulation

Definition: Perform an experiment on a virtual or real artifact

/EQperiment

Observable

Environment — Performance

states

Uncertainty Analysis: Resolve the gray and dark matter




Parameter and Scenario uncertainties

Uncertainty Parameter Range

U-value of Wall -10% ~ +10%

Energy Model Parameter U-value of Window -10% ~ +10%
Infiltration Rate -10% ~ +10%

Occupancy Density -20% ~ +20%

Scenario Parameters
Appliance Density -20% ~ +20%
Productivity Loss Bivariate Kernel Density

Cost Factors Product Cost -10% ~ +10%

Future Demand Charge Rate -2% ~ +2%




Uncertainty analysis

and SA of Peak Demand

Peak Demand
1823 2282

Peak Demand

Inputs Ranked By Effect on Output Mean
90.0%

0.030
Window SHGC

0.025 Solar Reduction Factor

Temperature control

peee PV Area
. Peak Demand
Minimum 170226 all Insulation thickness
0.015 Maximum 246,089
n 204617
Emissivity of Roof
Sid Dev 14356
Values 500
Lighting Dimmer

0.010

Infiltration rate

0.005 Voltage Reduction

185
190
195
200
205
210
215
220
225

0.000

o <} I} o o o Q <} Q
4 @ ] I} = 4 @ I o
b B - & & & & & §

Peak Demand




Uncertainty analysis of NPV
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Stochastic Optimization

Stochastic Optimization |||l
@RISK

Energy Cost
Demand
Charge Cost Optimal
Mix
Investment
Cost

Other costs




Optimization criteria

(1) 0= arg max E{NPV(0, %)}
(2)0" = arg max E{NPV(0,§)}& a{NPV(0,§)} < Viimit

(3)0* = argmax NPV(0,§) & Prob{NPV (0, &) = Vjymit} > Probym;;



Result with the three criteria
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Back to the major question

How do we validate the building energy model (for our research purpose)?

Focus on MFU
Relate to other relevant uncertainties

Validity question: will stakeholder decisions be influenced by model
fidelity, i.e. do the risk measures change such that stakeholder will make
other decision.

In our case we proceed as follows to answer this question:

We start from the low fidelity tool

Quantify MFU by comparing to high fidelity model: “delta” in power(t)

Develop a statistical model of delta (time series) and add to our model

Redo the stochastic optimization

Inspect the impact on the relevant risk measures %
G



The result for delta(t)
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Repeat stochastic optimization

Findings:
* With delta, in some cases different optimum
e With delta®, in all cases same optimum (when using criterion 1)

_ Distribution with delta=0
(original case)

© 4@ Distribution with delta

Vauesx 1075




|mpact of delta on risk measures

Question: will the added delta lead to rejecting an optimum set that was acceptable
Example criterion 3: P(NPV > 0.9M) > .8

_ Passes

— Does not pass; P = 0.69

— Almost passes: P =0.79




What does it all mean?

Work is continuing:
» SA used to rank delta and delta® against other uncertainties
* Apply to more cases; draw general conclusions

For now the conclusions are:
- Our reduced-order model is valid for power studies
- Some fine tuning is sometimes necessary

We will apply the same technique to multi building nodes (each has its
own delta)

Since the reduced order tool is simple but adequate, we are developing
a do-it-yourself tool for building operators (totally Excel based)
@% §



General conclusions

Many urban energy model developments choose a BEM based on a
hunch rather than on inspection of validity

Many current neighborhood energy models are over-engineered

If less is known about the buildings, the role of MFU becomes less
iImportant (rather self evident but now quantifiable)

The introduction of risk measures is necessary to conduct validity tests

The DC reduction optimization can be packaged as a DI1Y tool



Thanks for your listening!

Fried@gatech.edu
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Uncertainty Analysis

Major development

Parameter UQ Repository

@

Simulation Engine

gbXML schema extension: gbXML _uq




Scaled up to GURA-Workbench (EnergyPlus)

ModelCenter - Model Integration Environment
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Simulation Engine
Module

(ModelCenter, Java,
EnergyPlus)

Augenbroe, G., Y. Zhang, J. Khazaii, Y. Sun, H. Su, B. D. Lee, and J. Wu, "Implications of the Uncoupling of Building and HVAC
Simulation in the Presence of Parameter Uncertainties", 13th International Conference of the International Building _~
Performance Simulation Association, Chambery, France, 08/2013. '

Lee, B. D., Y. Sun, G. Augenbroe, and C. J. J. Paredis, "Towards Better Prediction of Building Performance: A Workbench to

Analyze Uncertainty in Building Simulation”, 13th International Conference of the International Building Performance
Simiilation A<ssociation Chamberv France 08/201
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