3SMART Smart Building – Smart Grid – Smart City

Anita Martinčević

University of Zagreb Faculty of Electrical Engineering and Computing

anita.martincevic@fer.hr

Workshop on data intelligent operation of district heating and district cooling systems

04. April 2019.

UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

UNIZGFER smart building team

Mario Vašak

Vinko Lešić

Hrvoje Novak

Danube Transnational Programme

Anita Martinčević

Nikola Hure

Danko Marušić

Tamara Hadjina

Mateja Car

The 3Smart project

Integrated real-time energy management of buildings and energy distribution grids, including demand response

1. modular software tool applicable to different buildings and grids configurations

The 3Smart project

Integrated real-time energy management of buildings and energy distribution grids, including demand response

 pilots in 5 different countries comprising buildings and electricity distribution grids; tool demonstration & CBAs

Pilot buildings

UNIZGFER skyscraper (CRO)

EON building (HU)

School in Idrija (SLO)

Retairementcare centrum, Strem

VOLESS HULE

Grid side support:

- operators,
- distributers,
- regulators

School in Strem (AU)

EPHZHB building, Tomislavgrad (BIH)

The 3Smart project

Integrated real-time energy management of buildings and energy distribution grids, including demand response

- 3. strategy for removal of regulatory and other barriers related to real-time integrated energy management of buildings and grids including demand response
- 4. Smart city upscale

(including water distribution system,

smart transport, etc.)

3Smart basic facts

- Lead partner: University of Zagreb Faculty of Electrical Engineering and Computing
- 9 ERDF partners (from Croatia, Slovenia, Austria, Hungary)
- 3 IPA partners (from Serbia and Bosnia and Herzegovina)
- 5 ASPs (from Croatia, Slovenia, Bosnia and Herzegovina, Hungary)
- 1/1/2017-31/12/2019
- Budget: 3.79 M€

3Smart in short

Classical commercial buildings

Fan coil unit

Comfort control in zones is performed by local digital controllers...

Classical commercial buildings

...networked to enable central data acquisition.

Classical commercial buildings

Controlled units for conditioning of the heating/cooling media...

Classical commercial buildings

Classical commercial buildings

Classical commercial buildings

Classical commercial buildings

Classical commercial buildings

• Many such non-cooridinated building coincidentally produce large peaks and sags of energy consumption on the grid

Classical commercial buildings

• Many such non-cooridinated building coincidentally produce large peaks and sags of energy consumption on the grid

3Smart Approach

(coordination within the building, within the grid and between the building and the grid)

weather forecast

energy prices

Idea behind 3Smart project

What if the grid assigns different energy costs to different times of consumption and communicates it to the building in advance ?

If the grid and building subsystems are coordinated the building can adapt to the prices and flexibility requests posed (**demand response**) by adjusting the consumptions of its subsystems to the conditions provided by the grid. while taking into account:

- Lower operation costs
- Reduced energy losses Increased equipment lifetime

3Smart project – how we do it?

- Separate software modules for different building levels
- Mutually coordinated in any building configuration
- **Predictive control** the application takes into account weather forecast, energy prices forecast and all other relavant predictions

 Mathematical optimizations – minimizing operation while respecting comfort and equipement constraints

3Smart project – how we do it?

$$\begin{array}{ll} \mathsf{HHL} & J_h^* = \min_{\mathbf{u}_h} \ f_h\left(\mathbf{u}_l, \mathbf{u}_h, \boldsymbol{\theta}_{h0}\right) \\ & \text{s.t.} \quad \mathbf{G}_h \mathbf{u}_h \leq \mathbf{w}_h + \mathbf{G}_{hl} \mathbf{u}_l + \mathbf{E}_h \boldsymbol{\theta}_{h0} \\ \hline \mathsf{price} & \\ & - - - \frac{J_h^*, \ \mathcal{C}^{\mathrm{CR}^h}}{2} \left(\left(- - - - - \right) \right)_{\mathbf{u}_l} - \mathsf{consumption} \\ & J_l^* = \min_{\mathbf{u}_l} \ J_h^*(\mathbf{u}_l) + f_l\left(\mathbf{u}_l, \boldsymbol{\theta}_{l0}\right) \\ \mathsf{LHL} & \text{s.t.} \quad \mathbf{G}_l \mathbf{u}_l \leq \mathbf{w}_l + \mathbf{E}_l \boldsymbol{\theta}_{l0} \\ & \mathbf{u}_l \in \ \mathcal{C}^{\mathrm{CR}^h} \\ & \\ & \\ \end{array}$$

iterreg

3Smart Approach - How we realy do it

Danube Transnational Programme 3Smart

FER

3Smart Approach

- Relies on the existing hardware → low hardware investment costs
- Coordination as a service switchable on-off via software
- The service is modular separate modules for different building levels
- Mutually coordinated in any configuration

138.20%

Estimated Energy cost savings

Included microgrid and volatile electricity prices

Estimated Energy cost savings

Business – R&D projects

- Project ENHEMS-Buildings
- Budget: 569 145 €
- Duration: 2013-2015
- Call: IPA III.C

- Project 3CON
- Budget: 1,5 mil. kn
- Duration: 2014-2017
- Call: HRZZ UIP

- Project DYMASOS
- Budget: 3,4 mil. €
- Duration: 2013-2016
- Call: FP7

- Project 3Smart
- Budget: 3 791 343 €
- Duration: 2017-2019
- Call: Interreg Danube

Business – technology transfer projects

- Project PC-ATE
- Budget: 17 mil. kn
- Duration: 2018-2022

ENT

- Call: IRI
- Partners:

Bringing building into smart city arena - extension to more complex systems

- flexibility long-term contracting with the grid
- demand response interaction
- battery system degradation
- Building technology: indoor lighting and shading, hummidity, CO2
- Aggregators: buildings, district
- Heating distribution
- Water distribution
- Street lighting
- Electrical vehicles charging

Thank you!

Acknowledgement

The presented research results are obtained within the projects Smart Building – Smart Grid – Smart City (3Smart) and 3CON –Control-based Hierarchical Consolidation of Large Consumers for Integration in Smart Grids. Project 3Smart is co-funded by the European Union through Interreg Danube Transnational Programme (DTP1-502-3.2-3Smart) and project 3CON is fully supported by Croatian Science Foundation under the project No. 6731

www.lares.fer.hr

PROJECTS WEB PAGES

www.interreg-danube.eu/3smart

www.fer.unizg.hr/3con

DISCLAIMER

The contents of this presentation are the sole responsibility of its authors and do not necessarily reflect the views of the European Union the Interreg Danube Transnational Programme.

