

Geothermal combined heat and power (chp) concepts

Fabian Dawo, Christoph Wieland, Hartmut Spliethoff

Technical University of Munich

Department of Mechanical Engineering
Institute for Energy Systems

Zagreb, 03. April 2019

Outline

- 1. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria
- 2. Motivation for power generation from geothermal energy
- 3. CHP plant modeling
- 4. TUM-ORC and comparison with the state of the art parallel chp concept

Deep Geothermal Energy in Germany

District heating [2]:

Installed capacity: ~ 313,5 MW (2017)

Production: 893,3 GWh (2017)

Power Generation [2]:

Installed capacity: ~ 36 MW (2017)

Production: 160 GWh (2017)

Facilities in Bavaria:

- 800 5000 m vertical depth
- 60 150°C thermal water temperature

Hydrothermal doublet

[3], [4]

[1]

The Geothermal-Alliance Bavaria

Technical University of Munich

Friedrich-Alexander University Erlangen-Nuremberg

University of Bayreuth

Several local operators of geothermal facilities (district heating and power generation)

Strengthen and promote geothermal energy research and applications

Bavarian State Ministry of Education, Science and the Arts

Outline

- 1. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria
- 2. Motivation for power generation from geothermal energy
- 3. CHP plant modeling
- 4. TUM-ORC and comparison with the state of the art parallel chp concept

Motivation: Why electricity from geothermal energy?

Theoretical heat stored in the geothermal

water: 308 GWh

Heat demand: 113 GWh

⇒ ≈ 63% excess heat

Key influencing factors for combined heat and power (chp) production from geothermal energy

Outline

- 1. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria
- 2. Motivation for power generation from geothermal energy
- 3. CHP plant modeling
- 4. TUM-ORC and comparison with the state of the art parallel chp concept

Example: Parallel CHP

Input: District Heating System data, geothermal brine

District Heating System data	
Return temperature	50°C
Supply temperature	75°C
Geothermal brine	
Temperature	122°C
Mass flow	125 kg/s
pressure	9 bar

Design: Design point and assumptions

Assumptions and boundary conditions:

Heat losses neglected Heat exchanger efficiency 0.9 Pump efficiency 0.8 Turbine efficiency 0.8 Live vapor superheating 3 K Condensation temperature 40 °C Ambient temperature 15 °C	Pressure losses	neglected
Pump efficiency 0.8 Turbine efficiency 0.8 Live vapor superheating 3 K Condensation temperature 40 °C Ambient temperature 15 °C	Heat losses	neglected
Turbine efficiency 0.8 Live vapor superheating 3 K Condensation temperature 40 °C Ambient temperature 15 °C	Heat exchanger efficiency	0.9
Live vapor superheating 3 K Condensation temperature 40 °C Ambient temperature 15 °C	Pump efficiency	0.8
Condensation temperature 40 °C Ambient temperature 15 °C	Turbine efficiency	0.8
Ambient temperature 15 °C	Live vapor superheating	3 K
	Condensation temperature	40 °C
	Ambient temperature	15 °C
Working fluid R245fa	Working fluid	R245fa

- Thermodynamic optimization of the net power output
- Component sizes for economic evaluation

Optimized operation strategy

- Calculation of optimum power output for varying district heating demands
- Varying district heating demands result in varying brine mass flows for the power block and varying optimum working fluid mass flows
- The off-design behavior of the components has to be considered

Optimum power output for varying district heating demands

Economic Evaluation

Annual gross electricity distribution

Economic Evaluation

Two cases:

- Optimized for net power output
- German Case:

The gross produced electricity is sold and the power demand for pumps and ACCfans is bought from the grid.

Assumptions and boundary conditions:

<u> </u>		
running time	20a	
availability	85%	
electricity sale price (EEG feed-in tariff)	25.2 ct/kWh	
electricity purchase price	10 ct/kWh	
personnel costs	function of transferred heat	
other operating equipment	1% Invest	
maintenance	3% Invest	
insurance	0.6% Invest	
inflation	1.5%	
calculatory interest rate	6.5%	

Economic Evaluation

German Case: positive NPV for this specific design point

operation strategy

Variation of the design point: economic evaluation

No design point with positive NPV for Net Power Optimized Case.

German Case is highly profitable with an optimal design point at about 1/3 of the maximum heat demand.

Outline

- 1. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria
- 2. Motivation for Power Generation from Geothermal Energy
- 3. CHP plant modeling
- 4. TUM-ORC and comparison with the state of the art parallel chp concept

TUM-ORC

Operating mode:

1. Low district heating demand

TUM-ORC

Operating mode:

- 1. Low district heating demand
- 2. Medium district heating demand

TUM-ORC

Operating mode:

- 1. Low district heating demand
- 2. Medium district heating demand
- 3. High district heating demand

Comparison: Annual gross electricity distribution

Annual produced electricity:

	Parallel-ORC	TUM-ORC
E _{net} [MWh]	1947	5626
E_{gross} [MWh]	9319	14880

Comparison: NPV after 20 years for varied design points

NPV is higher for TUM-ORC and also the net power optimized case is economically viable with the TUM-ORC concept.

Thank you for your attention.

Fabian Dawo fabian.dawo@tum.de

Technical University of Munich Department of Mechanical Engineering Institute for Energy Systems

TUM-ORC test rig

Bibliography:

- [1] Bayrisches Landesamt für Umwelt, www.lfu.bayern.de
- [2] GeotIS: Geothermische Standorte, www.geotis.de
- [3] Thorsten Agemar, Josef Weber, and Rüdiger Schulz. Deep geothermal energy production in Germany. Energies, 7(7):4397–4416, 2014.
- [4] Schifflechner C. Assessment of Hydrothermal Deep Geothermal Plants for combined Heat and Power Production with Respect to a Novel Monitoring Software. Master's thesis, 2019