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Deep Geothermal Energy in Germany

District heating [2]:

« Installed capacity: ~ 313,5 MW (2017)
* Production: 893,3 GWh (2017)

Power Generation [2]:
« Installed capacity : ~ 36 MW (2017)
* Production: 160 GWh (2017)

Facilities in Bavaria;

« 800 — 5000 m vertical depth
* 60— 150°C thermal water temperature
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The Geothermal-Alllance Bavaria

TI.ITI Technical University of Munich

Friedrich-Alexander University Erlangen-Nuremberg

w University of Bayreuth
+

Several local operators of geothermal facilities (district heating and power generation)

‘ Strengthen and promote geothermal Bavarian State Ministry of
energy research and applications Education, Science and the Arts
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Motivation: Why electricity from geot
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Theoretical heat stored in the geothermal
water: 308 GWh
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Key influencing factors for combined heat and power (chp)
production from geothermal energy

cycle architecture

thermal water

« temperature
« massflow
* pressure

uheat demand

What is the optimum design
size for the power block in ‘
heat driven geothermal chp
plants?
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Thermodynamic and
economic CHP model

Design specifications for
power block

Optimized operating
strategy
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Example: Parallel CHP
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Input: District Heating System data, geothermal brine

DHS data,
geothermal brine
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Variation of design
heat demand

Heat demand [MW)]
o

g

Return temperature 50°C
Supply temperature 75°C
Geothermal brine

Temperature 122°C
Mass flow 125 kgl/s
pressure 9 bar

Optimum?

yes

plant design,
operation strategy
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Design: Design point and assumptions

DHS data,
geothermal brine
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Assumptions and boundary conditions:

Pressure losses

Heat losses

Heat exchanger efficiency
Pump efficiency

Turbine efficiency

Live vapor superheating
Condensation temperature
Ambient temperature

Working fluid

neglected
neglected
0.9
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40 °C
15°C
R245fa
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200
time [d]

250

# Thermodynamic optimization of the net power output

# Component sizes for economic evaluation
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Optimized operation strategy

DHS data,
geothermal brine
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Calculation of optimum power output for
varying district heating demands

Varying district heating demands result in
varying brine mass flows for the power
block and varying optimum working fluid
mass flows

The off-design behavior of the
components has to be considered

2500
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500 L

0.5

1 1.5l 2 25
Heat demand [kW]

#Optimum power output for varying district heating demands
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Economic Evaluation

DHS data,
geothermal brine

Power plant design
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Economic Evaluation

DHS data,
geothermal brine

1 Assumptions and boundary conditions:
running time 20a
Power plant design
for fixed heat  |rmmmm— Two cases: availability 85%
demand - Optimized for net power output electricity sale price 25.2 ctkWh
(EEG feed-in tariff)
| « German Case: b
c Th d d el oL I d eI(_ectr|C|ty purchase 10 ct/kWh
Optimized operation .g o € gross producea e ectr|C|ty IS SOIa an price
strategy g & the power demand for pumps and ACC- personnel costs function of transferred heat
[}
1 S 2 fans is bought from the grid. other operating 1% Invest
-% 2 equipment
= maintenance 3% Invest
Economic evaluation 7'}
insurance 0.6% Invest
inflation 1.5%
calculatory interest 6.5%
rate
no
Optimum?
yes

plant design,
operation strategy
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Economic Evaluation

DHS data,
geothermal brine
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no 4 ' ' ' : : ' ' ' L rate
Optimum? 0 2 4 6 8 10 12 14 16 18 20
years
yes
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German Case: positive NPV for this specific design point
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Variation of the design point: economic evaluation

DHS data,
geothermal brine

Power plant design
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net present value after 20 years [€]
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=

No design point with
positive NPV for Net
Power Optimized Case.

German Case is highly
profitable with an
optimal design point at
about 1/3 of the
maximum heat demand.

16



Outline

1. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria
2. Motivation for Power Generation from Geothermal Energy

3. CHP plant modeling

4. TUM-ORC and comparison with the state of the art parallel chp concept

Zagreb | 03. April 2019 | Fabian Dawo

17



TUM-ORC

Operating mode:

1. Low district heating demand
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TUM-ORC

Operating mode:
1. Low district heating demand

2. Medium district heating demand
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TUM-ORC

Operating mode:
1. Low district heating demand
2. Medium district heating demand

3. High district heating demand
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Comparison: Annual gross electricity distribution

Parallel ORC TUM-ORC

ACC-Fan ACC-Fan

Net Pump Pump

Net

Thermal water pump

Thermal water pump
Annual produced electricity:

Parallel-ORC TUM-ORC

Eper [MWH] 1947 5626
Egross[MWh] 9319 14880
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Comparison: NPV after 20 years for varied design points

6
20 x10 |

V4 . AN

—
O
T
( 4
{

M

=
o
T

net present value after 20 years [€]

German Case: TUM-ORC

~ -~/
e N

s A

German ORC

T

5+ Net Power Optimized: TUM-ORC \
N/v-\~~\ I\’\/'/ R \
\ .y
\ ‘:&
0 [ --"TTTTTTTTTTT : """""""""""""""""""""""""" s’"""""""‘% """ n
e~ . . \ I
Net Power Optimized: parallel ORC \ ;
¥ !
_5 1 1 1 1 \ ]
0.5 1 15 2 25
design district heating demand [kW] x10*

Zagreb | 03. April 2019 | Fabian Dawo

NPV is higher for TUM-ORC and also
the net power optimized case is
economically viable with the TUM-
ORC concept.
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Thank you for your attention.

TUM-ORC test rig

Fabian Dawo
fabian.dawo@tum.de

Technical University of Munich
Department of Mechanical Engineering
Institute for Energy Systems
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