

GRUNDFOS

Grundfos - Building Services

Installations in and around buildings:

3/3 of energy consumption in buildings is used for heating and cooling

80% of energy consumption is used in small buildings < 1000 m²

Two application studies

- Model Predictive Control of Heat pump and Solar Thermal supply
- > Control of Return Temperature in Gas Boilers

Model Predictive Control of Heat pump and Solar Thermal supply

Ideal for agricultural and industrial use

Save £££'s and replace LPG, Oil, Gas Heating

Transportable compact heat storage

Stores vast quantities of energy as heat

SunampCube

This exciting new product responds to the needs of large community and commercial scale heat storage. It helps deal with grid constraints and ensures continuous generation. This can have a huge impact on project payback.

SunampCube can also be used to harvest and reuse waste heat.

Trial development in progress.

Compact, Flexible, High Performance

Shrunk 4 times smal

SunampCube

page.

Size of a standard pallet

	SunampPV	SunampStack_	Sunamp <u>Cube</u>
Compatibility	PV with combi boiler	Heat pump, Biomass	Wind, Hydroelectric, Large PV, Waste heat source
Projected Savings	Up to £200 per year*	Up to £5,000 per year*	By Application
Capacity (kWh)	5.7	Up to 60 [†]	Up to 250
Replaces Water Tank (L)	150	Up to 2000	5000
Mobile	×	*	Optional
Central Heating	×	✓	✓
Hot Water	✓	√	Optional
Temperature Output (°C)	Up to 65	System dependent	Up to 80

"Including Government Incentives (Feed-in tariff/ renewable heat incentive)

[†]System dependent

Two application studies

- ➤ Model Predictive Control of Heat pump and Solar Thermal supply
- > Control of Return Temperature in Gas Boilers

Grundfos Building Simulation Library

Simulation Driven development

System Definition

Energy savings from:

- Reduction of room temperature
- 2 Improved supply efficiency, $\eta = f(P_L, T_{ret})$

Boiler/supply Model

$$\eta_{S} = \theta_{1} T_{ret} + \theta_{2} T_{ret}^{2} + \theta_{3} R_{L} + \theta_{4} R_{L} T_{ret} + \theta_{5}$$

Example

On part load 15 %, a 10 °C reduction in T_{ret} implies a 5 % reduction in η_{S} .

Conclusions

- Annual savings less than 1% (actual case)
- Return temperature control have a tendency to reduce indoor temperature

