# Model Predictive Control for Smart Energy Systems

#### Rasmus Halvgaard

John B. Jørgensen, Niels K. Poulsen, Lieven Vandenberghe, Henrik Madsen

CITIES, May 27, 2014



#### Fossil-fuel free future<sup>1</sup>





 $<sup>^{1}</sup>$ Danish Commission on Climate Change Policy, 2010

### Agenda

- Model Predictive Control
- 2 Model and simulation examples
  - Example 1: EV
  - Example 2: Heat pump and building
- Aggregator strategies
- Waste water treatment
- Conclusions

#### **Economic Model Predictive Control**

minimize 
$$\sum_{k=0}^{N} c_k u_k$$
 subject to 
$$x_{k+1} = Ax_k + Bu_k + Ed_k$$
 
$$y_k = Cx_k$$
 
$$u_{\min} \le u_k \le u_{\max}$$
 
$$y_{\min} \le y_k \le y_{\max}$$

## Example 1: EV charging





## Why MPC?

- Controllable loads (EV, Thermal storage)
- Exploits predictions to react ahead of time (prices, demand, wind)
- Flexible control architecture
- Handles system constraints
- Feedback and disturbance rejection

## Heat pump and building



#### Heat pump MPC

5 day simulation, 48 h prediction horizon using known inputs. Savings up to 35% compared to MPC with fixed price.



#### Annual energy consumption and cost



#### Aggregator strategies



#### Decomposition methods

Solve the aggregator problem using

- Dual decomposition
- ② Douglas-Rachford splitting
- Indirect set point MPC

#### Dual decomposition



#### Douglas-Rachford splitting



Figure : Convergence for open-loop problem with tuned step sizes t.

#### Price to temperature set point



$$f_j(c) = -a_j c + b_j.$$

## Indirect set point MPC



### Waste Water Treatment Plant (WWTP)



#### Conclusions

- Linear dynamic models of heat pumps in buildings, heat storage tanks, electric vehicles, refrigeration systems, power plants, and wind farms.
- Economic MPC that demonstrates load shifting capabilities of these flexible units.
- Distributed large-scale aggregation methods based on MPC, convex optimization, and decomposition methods.
- Several strategies for controlling the power consumption of a large portfolio of flexible consumers using MPC.

#### Future work

- Energy management of flexible waste water treatment plants
- Model Predictive Control and forecasts
- Interface to Smart Grid markets
- WWTP aggregation strategies

#### **Questions and Comments**

## Rasmus Halvgaard rhal@dtu.dk

www.compute.dtu.dk/~rhal

Department of Applied Mathematics and Computer Science Technical University of Denmark





