

Methods For Optimal Operation And Market Participation Of District Heating Systems

Anders N. Andersen¹ and Daniela Guericke²

Joint research with Amos Schledorn², Ignacio Blanco² and Henrik Madsen² and collaboration with Hvide Sande Fjernvarme and Middelfart Fjernvarme

¹ EMD International A/S, Aalborg, Denmark

² Department of Applied Mathematics and Computer Science, Technical University of Denmark

CITIES Final Conference, Lyngby, 09/11/2020

Agenda

- 1. Heat Unit Replacement Bidding Method
- 2. Implementation in Sæby & Viborg

Motivation

Setting:

District heating provider with a portfolio of production units including combined heat and power (CHP) plant

Goal:

- Optimize the daily production of heat to cover the heat demand at minimal cost
- Sell the electricity from the CHP, if beneficial for the overall system cost
 - \rightarrow Bidding method

By POWER SOLUTIONS FRANCE [CC BY-SA 3.0], from Wikimedia Commons

Novel bidding method

Related bidding methods for CHP units in literature:

[Conejo et al., 2002, Rodriguez and Anders, 2004, Schulz et al., 2016, Dimoulkas and Amelin, 2014, Ravn et al., 2004]

- \rightarrow Take a power producer perspective
- \rightarrow all methods plan bids for the CHP units, if the electricity price forecast indicates its beneficial

Our approach:

Heat Unit Replacement Bidding (HURB) method

- Make use of the fact that we have to produce the heat for the district heating network anyway
- Bidding based on replacing heat unit production by CHP production

Blanco, I., Andersen, A. N., Guericke, D., & Madsen, H. (2019). A novel bidding method for combined heat and power units in district heating systems. Energy Systems. https://doi.org/10.1007/s12667-019-00352-0

HURB – Step 1

Optimize heat production without market participation (using mixed-integer linear programming)

HURB – Step 2

Replace iteratively heat-only units by CHP production (in descending order of operational costs)

1. Iteration: Replacing the gas boiler (GB)

- Bidding amount: Power production amount of the CHPs.
- **Bidding price**: Cost CHP Cost GB = (610.84 404.02) * 1.18 = 244.045

HURB – Step 2

Replace iteratively heat-only units by CHP production (in descending order of operational costs)

2. Iteration: Replacing the wood chip boiler (WCB)

- **Bidding amount:** Power production amount of the CHPs
- Bidding price: Cost CHP Cost WCB = (610.84 211.45) * 1.18 = 471.279

Comparison with 5 bidding methods for CHP units from literature

Conejo, A. J., Nogales, F. J., and Arroyo, J. M. (2002). Price-taker bidding strategy under price uncertainty. IEEE Trans. Power Syst., 17(4):1081–1088.

Dimoulkas, I. and Amelin, M. (2014). Constructing bidding curves for a CHP producer in day-ahead electricity markets. In 2014 IEEE Int. Ener. Conf., pages 487–494.

Ravn, H. V., Riisom, J., Schaumburg-Müller, C., and Straarup, S. N. (2004). Modelling Danish local CHP on market conditions. In Proc. 6th IAEE European Conference: Modelling in Energy Economics and Policy.

Rodriguez, C. P. and Anders, G. J. (2004). Bidding strategy design for different types of electric power market participants. IEEE Trans. Power Syst., 19(2):964–971.

Schulz, K., Hechenrieder, B., and Werners, B. (2016). Optimal operation of a CHP plant for the energy balancing market. In Operat. Res. Proceed. 2014, pages 531–537. Springer.

Rolling horizon length = Number of days considered in one optimization step

Results - Bids

Percentage of hours with bids and won bids in one month averaged over several samples

Method	Receding Horizon	CHP 1		CHP 2		
		Bids	Won	Bids	Won	
HURB Worst	1	98.91	41.95	98.70	41.91	
HURB Avg.	-	99.79	42.19	99.75	42.15	
HURB Best	10	99.89	42.28	99.87	42.26	
Conejo et al.	10	44.92	39.34	44.92	39.31	
Rodriguez & Anders	5	82.52	35.85	82.40	35.82	
Schulz et al.	12	45.02	18.54	45.01	18.53	
Dimoulkas & Amelin	12	75.55	26.56	75.55	26.55	
Ravn et al.	5	44.84	32.58	44.83	32.57	

We can take advantage of the portfolio of heat production units and base the bidding amounts and prices on the heat production.

Having Implemented The Heat Unit Replacement Bidding Method in Sæby & Viborg

energyTRADE planning bidding prices in Day-ahead market and regulating power market in Sæby, using The Heat Unit Replacement Bidding Method

Production and storage capacities at Sæby District Heating

Solar collector	36549m3
Two CHP's	11,8MW-el
Gas boiler	17,5 MW-heat
Electrical boiler	11,8MW-heat
Thermal storage	5400m3
Heat rejection unit	7MW-heat

The hottest part of the exhaust gas from the CHPs is used to run an absorption heat pump, condensating the exhaust gas, making a total efficiency of the CHPs > 100%.

energyTRADE planning bidding prices in Day-ahead market and regulating power market in Sæby, using The Heat Unit Replacement Bidding Method

Data providers makes energyTRADE communicate with trader, prognosis and SCADA-data

A summer operation in Sæby

energyTRADE planning bidding prices in Day-ahead market and regulating power market in Viborg District Heating, using The Heat Unit Replacement Bidding Method

📥 energyTRADE 4.7 - Viborg energyTRADE 25082020

Eiles Settings Reports Help

Time series: Udetemperaturprognose Elprognose DK Vest DK Vest Spotpriser CO2_kvote_pris_27052019 Hamlen kedeleffekt Bid type: CCAnlæg Block bids v

Day ahead calculation Regulating market calculation

- 8 ×

Further research needed for optimizing biddings at Thisted District Heating

A energyTRADE 4.7 - Thisted energyTRADE 29-10-2020 (Calculated)

Files Settings Reports Help

Time series: Ønsket slutlager Bid type: Turbinen_kondensatoren Price indeper v Gasmotor Nord 1 Price indeper v Gasmotor Nord 2 Price indeper v

Day ahead calculation Regulating market calculation

- 🗆 🗙

Thanks for the attention!

