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The Danish Wind Power Case

.. balancing of the power system

I

25 % wind energy (West Denmark January 2008)| 20 % wind energy
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In 2017 more than 44 pct of electricity load was

In 2008 wind power did cover the entire covered by wind power.
demand of electricity in 200 hours For several days the wind power production was
(West DK)

more than 100 pct of the power load.

July 10th, 2015 more than 140 pct of the power
load was covered by wind power
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Challenges

i

f— Preparatory study on 4|

e Smart Appli
— art Appliances tusper,
el
= l - Ecodesign Preparatory Study
. .- performed for the
European Commission
Welcome Project summary Planning & Meetings Documents Register for website Register for meeting Contact & Consortium

Home Project summary

Project Summary R/

The Ecodesign Preparatory Study on Smart Appliances (Lot 33) has analysed the technical, economic, market an %tal aspects with a view to a broad introduction of smart
appliances and to develop adequate policy approaches supporting such uptake. @
The study deals with Task 1 to 7 of the Methodology for Energy related products (MEErP) as follows: ,

Scope, standards and legislation (Task 1, Chapter 1); o
Market analysis (Task 2, Chapter 2); o

User analysis (Task 3, Chapter 3); A/

Technical analysis (Task 4, Chapter 4);

Definition of Base Cases (Task 5, Chapter 5); G '

« Design options (Task &, Chapter 6); /

« Policy and Scenario analysis (Task 7, Chapter 7). 6 .
An executive summary of the project results can be downloaded here. ///0
Throughout the study, new relevant aspects have come up which will be covered in a second phase of the Preparatory Study: , t

« Chargers for electric cars: technical potential and other relevant issues in the context of demand response.
« The modelling done in the framework of MEErP Task 6 and 7 will be updated with PRIMES data that recently became available, and with the EEA-countries.
« The development and assessment of policy options that were identified in the study will be further elaborated and deepened.
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Data Intelligent and
Flexible Energy Systems
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Temporal and Spatial Scales

The Smart-Energy Operating-System (SE-OS) is used to develop,
Implement and test of solutions (layers: data, models, optimization,
control, communication) for operating flexible electrical energy
systems at all scales.

Einens

Geographical Scale

Complexity
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DTU
Models for Systems of Systems =

Intelligent systems integration using big data and ICT
solutions are based on models for real-time operation of

flexible energy systems
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Smart-Energy OS e
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Control and Optimization

Day Ahead:

Stoch. Programming based on eg. Scenarios

i

Cost: Related to the market (one or two levels)

Direct Control:

Actuator: Power

Direct Control ;

oc) s
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Indirect Control
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Two-way communication

@ Models for DERs are needed

Sub Aggregator

~ Feantas | Butvien
-t aind geniiel s ardes

Constraints for the DERs (calls for state est.)

Contracts are complicated
Advanced
Controller

\ ~ Indirect Control:

Actuator: Price

Cost: E-MPC at low (DER) level, One-way
communication

In Wiley Book: Control of Electric Loads Models for DERs are not needed
in Future Electric Energy Systems, 2015 simple 'contracts'
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Proposed methodology
Control-based methodology
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We adopt a control-based f/ min B (am wiepi)]
approach where the price | k=0 j=1 \
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Data Intelligent Energy Systems

I

Automatic and self-cal. methods based on Big Data analytics and Al
Labs - Virtual, HiL, Live

Peer-to-peer communication (incl. blockchain)

Nested sequence of systems - systems of systems

Hierarchy of stoch. optimization (or control) problems

Multivariate probabilistic forecasting

Control principles at higher spatial/temporal resolutions

Cloud or Fog (loT, loS) based solutions - eg. for forecasting and control
Facilitates energy systems integration (power, gas, thermal, ...
Allow for new players (specialized aggregators)

Simple setup for the communication and contracts

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Harvest flexibility at all levels
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Robust and
Scenario-based
Control at Aggregator Level
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Example: Scenario-based Robust Control
(Level I1I)

The scenarios generated k = 1, ..., K,Vk € IC are applied
to a robust optimization problem by minimizing the cost at
the worst case scenario. This leads to the formulation of the
robust Aggregator problem as:

J
i (k) ¢, (k)
minimize max E 2wy
u k=1,...,K 4 ld)-f ()
'}:

J
! (2)
subject to Z ui“ =0, Yk e K

i=1

ul (1) = ul(t), VkeK.jeJ




Example: DER advanced controller (Level IV)

D. Advanced Controllers

Advanced controllers are DER units that operate with a
more complex controller such as MPC. Their optimization
problem is represented in (6).

N—-1
minimize Z plug + p'sy (6a)
e k=0
subject to  x 1 = Axy + Buy + Ed, (6b)
yr = Czy, (6¢)
Umin < Uk < Umax (Gd}
&um,in < &uk < &um,a:c (63)
Yk + Sk = Ymin (61f)
Yk — Sk < Ymax (68)

s > 0 (6h)




Example: Wind turbine scenarios

19 —— wind turbine n.1 —— wind turbine n.2
— real — real
scenarios scenarios
10 + .
Z
=
1]
=
o
o
=]
£
=
12 —— wind turbine n.3 —— wind turbine n.4
— real — real
scenarios scenarios
10 .
]
2
=
w
b4
[=]
(=8
=]
=
=

Fig. 2. Four wind turbines scenarios. For each turbine, 10 different scenarios
are calculated for a period of 6 days starting from time ¢. In dark blue the real
production data from the wind turbines, while the scenarios are represented
by the light dash blue lines. In red the real power production for each turbine.




Results:
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Fig. 4. Closed loop robust MPC simulation over ten days of data using 10
scenarios and 48 hours ahead prediction horizon.



=
=]
—

I

Case study No. 1

Control of heat pumps for swimming pools
(Minimization of Cost / CO2)
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SE-OS
Control loop design - logical drawing

| Termostat
actuator
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Share of electricity originating from renewables in Denmark Late Nov 2016 - Start Dec 2016

70 hydro

biomass
geothermal
wind

solar

7 28 29 30 01 02 03 04

Dec
2016

Source: pro.electicitymap.org
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Example: Price-based control

ENFOR ==  Smarthet

Smarthet > A307T4

Weather forecast Booking plan Controller Temperature limits

A3074 Controller

Cost: DK1 Imbalance Price Consumption [EUR/IMWh], Adaptive Estimation
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Example: CO2-based control

ENFOR ==  SmariNet

SmartMet = D7811

Booking plan Temperature limits
D7811 Controller

Cost: co2intensity [g/lkWh]
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DTU
Penalty Function (examples) =

e Real time CO,. If the real time (marginal) CO, emis-
sion related to the actual electricity production is used as
penalty, then, a smart building will minimize the total car-
bon emission related to the power consumption. Hence,
the building will be emission efficient.

e Real time price. If a real time price 1s used as penalty, the
objective 1s obviously to minimize the total cost. Hence,
the building is cost efficient.

e Constant. If a constant penalty is used, then, the con-
trollers would simply minimize the total energy consump-
tion. The smart building 1s, then, energy efficient.
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Summary

i

@ A framework called Smart-Energy OS based on Al and Big Data Analytics is
described for implementing smart energy systems

@ The SE-OS setup can focus on

*

Energy Efficiency

*

Cost Efficiency (Minimization)

*

Emission Efficiency (-> accelerating the transition to a low-carbon
energy system)

%* Smart Grid demand (like ancillary services needs, ...)

| We have demonstrated a large potential for unlocking the flexibility and for
demand response using big data analytics and Al

@ We have suggested a method for characterizing the energy flexibility which
facilitates smart grid applications
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Some 'randomly picked' books on modeling ....

Trexts i Statistical Scienee

Introduction to
General and Generalized
Linear Models

Time Series pan

Analysis S
mgrating

Renewables in

Electricity Markets

Oiperational Froblems

Henrik Madsen

2
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For more information ...

See for instance

www.smart-cities-centre.org

...0Or contact
— Henrik Madsen (DTU Compute)
hmad@dtu.dk

Acknowledgement - DSF 1305-00027B
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