DTU Energy Efficient Production of Pressurized Hydrogen - E2P2H2

(EUDP project commenced by DTU Energi in collaboration with HTAS, 2014-2016)

Workshop, April 4th 2017

Søren Højgaard Jensen

Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark.

shjj@dtu.dk

Cover on FUEL CELLS 16 (2) 2016

DTU Energy Department of Energy Conversion and Storage

The Solid Oxide Cell

DTU

DTU Energy, Technical University of Denmark

Why Are Solid Oxide Electrolysers Interesting?

C. Graves, S.D. Ebbesen, M. Mogensen, K.S. Lackner, Renewable and Sustainable Energy Reviews. 15 (2011) 1–23

DTU Energy, Technical University of Denmark

Synergy with utilization of biomass

- Biogas from biomass consist mostly of CO_2 (40%) and CH_4 (60%)
- If CO₂ in the biogas can react with H₂ we can generate app. 50% more CH₄

Photo: Mikael Kau/

http://www.chamco.net/Gasification.htm

SOEC Operating Strategy

Two operating strategies

- 1. Always at optimal H-C ratio for the synthesis step
- 2. SOEC operates at 1/3 of nominal power at high electricity prices (generates enough O_2 for gasification)

GreenSynFuels Report: <u>http://www.hydrogennet.dk/groennesynfuels/</u>

Pressurized SOCs for large-scale electricity storage

S. H. Jensen, C. Graves, M. Mogensen, C. Wendel, R. Braun, G. Hughes, Z. Gao and S. A. Barnett, *Energy and Environmental Science* **8** (2015) 2471

DTU

Pressurized SOCs for large-scale electricity storage

S. H. Jensen, C. Graves, M. Mogensen, C. Wendel, R. Braun, G. Hughes, Z. Gao and S. A. Barnett, *Energy and Environmental Science* **8** (2015) 2471

Pressurized SOCs for large-scale electricity storage

Thermal-neutral potentials versus P at T $\frac{1}{4}$ 750 C for a cell operating over a fuel composition range from pt 1 to pt 2 (Fig. 3). Shown for comparison are the Nernst potential ranges for fuel compositions from pt 1 to pt 2 and oxygen at the other electrode.

Energy Environ. Sci., 2011, 4, 944-951

Pressurized SOCs for large-scale electricity storage

S. H. Jensen, C. Graves, M. Mogensen, C. Wendel, R. Braun, G. Hughes, Z. Gao and S. A. Barnett, *Energy and Environmental Science* **8** (2015) 2471

DTU Energy, Technical University of Denmark

DTU Energy, Technical University of Denmark

DTU

Pressure Test Setup

1 kW SOEC Stack from HTAS

S. H. Jensen, X. Sun, S. D. Ebbesen, M, Chen, *Fuel Cells* **16** (2) 2016 205-218, DOI: 10.1002/fuce.201500180

14 ——**1** bar 3 125 > --10 Stack voltage / 10 8 -0.4 -0.2 0.2 0 0.4 0.6 Current Density / A cm⁻¹

S. H. Jensen, M, Chen, X. Sun, C. Graves, J. B. Hansen *To be published in J. Electrochem. Soc*

DTU Energy, Technical University of Denmark

50% H₂O + 50% H₂, Air, 750 ° C

SOEC operating conditions:

- 750°C
- 20 L/h of 50% H_2 + 25% H_2O +25% CO_2 to the fuel electrode
- 50 L/h air to the oxygen electrode

S. H. Jensen, et al. unpublished work

Gas Pressure Drop Across the Stack

Operating conditions: 400 l/h Air. 200 l/h H₂ + 200 l/h H₂O. 750 $^{\circ}$ C

DTU Energy, Technical University of Denmark

S. H. Jensen, X. Sun, S. D. Ebbesen, M, Chen, *Fuel Cells* **16** (2) 2016 205-218, DOI: 10.1002/fuce.201500180

Pressurized operation of Planar SOC stacks demonstrates that:

- Gas pressure drop across the stack decreases with pressure ~ (adiabatic) $P^{-0.8}$
- Stable SOEC/SOFC operation with small steam/stack-voltage fluctuations demonstrated at elevated pressure
- ASR decreases with pressure (electrode resistance $\sim P^{-0.3}$)
- Long-term operation at high pressure does not show increase in the degradation rate, although the short test period for the stack test makes this statement a bit uncertain
- Internal Methane Formation is the new black ;-)

Thank You For Your Attention

Extra Slides

Pressure Test Setup

DTU Energy, Technical University of Denmark

Pressurized SOC activites around the world

Steam Electrolysis Thermodynamics

Electrode Reaction Kinetic

$$H_2 + O^{-1} \underset{V_b}{\leftarrow} H_2O + 2e^{-1}$$

$$v_2O_2 + 2e^{-\frac{v_f}{v_b}O^{--}}$$

Exhange rates increases with pressure

Gas-solid reaction resistance decreases with pressure

$$R = k(P)^{-n}$$

- J. Høgh have reported n \sim 0.27 (P_{H2O} dependence) for DTU Energy Ni/YSZ electrodes*
- Thomsen *et al.* have reported n ~ 0.25 for composite LSM/YSZ electrodes**

- * J. Høgh, *Influence of impurities on the H2/H2O/Ni/YSZ electrode*, Risø National Laboratory, Roskilde, Denmark (2005)
- ** E.C. Thomsen et al. J. Power Sources **191** (2009) 217–224

$$R = k(P)^{-n}$$

Pressure and Performance

- 750 °C
- Negative Electrode: 20% H_2O + 80% H_2
- Positive Electrode: O₂

Jensen, Sun, Ebbesen, Knibbe, Mogensen. Int. J. Hydrogen Energy 35 (2010) 9544

DTU Energy, Technical University of Denmark

DTU

Gas Conversion Impedance

Primdahl and Mogensen. J. Electrochem. Soc 145, 2431 (1998)

$$J_{I} = J_{O} + J_{A}$$

 $H_{2}+O^{--} \rightarrow H_{2}O+2e^{--}$

Pressure and Performance

- 750 °C
- Negative Electrode: 20% H_2O + 80% H_2
- Positive Electrode: O₂

Jensen, Sun, Ebbesen, Knibbe, Mogensen. Int. J. Hydrogen Energy 35 (2010) 9544

DTU Energy, Technical University of Denmark

"Charge transfer limited reactions involving dissociatively adsorbed oxygen at low Coverage" E.C. Thomsen et al. J. Power Sources **191** (2009) 217–224

Stack voltage /

-0.6

33% H₂O + 67% H₂, Air, 750 ° C

-0.4 -0.2 Current Density / A cm⁻¹

S. H. Jensen, M, Chen, X. Sun, C. Graves, J. B. Hansen *To be published in J. Electrochem. Soc*

o

ASR vs pressure

Air starvation during IV curve recorded between 3 and 5 bar

S. H. Jensen, M, Chen, X. Sun, C. Graves, J. B. Hansen *To be published in J. Electrochem. Soc*

- Low frequency summit frequency decreases with pressure
- The size of the highfrequency arc decreases with pressure

S. H. Jensen, X. Sun, S. D. Ebbesen, M, Chen, *Fuel Cells* **16** (2) 2016 205-218, DOI: 10.1002/fuce.201500180

S. H. Jensen, X. Sun, S. D. Ebbesen, M, Chen, *Fuel Cells* **16** (2) 2016 205-218, DOI: 10.1002/fuce.201500180

Durability Test

S. H. Jensen, et al. unpublished work

CH4 Formation Thermodynamics

