Integrating electrical and thermal domains - A case study of the Danish Technical University campus

Thibaut Richert* (PhD student)
Oliver Gehrke (Scientist)

DTU - Energy System Operation and Management (ESOM)

September 18, 2017

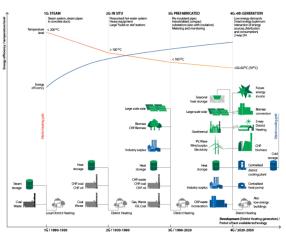
Agenda

- Background Context & Problem statement
- DTU campus
- Use Cases
- Modelling experience
- Conclusion

Background & Context

What big picture are we looking at?

- Integrated energy systems
- Multi-carrier energy systems
- Multi-source multi-products energy systems
- · Energy systems coupling
- Multi-domain energy systems (MES)
- ...


•000

Background & Context

What big picture are we looking at? - 4GDH and SMART GRID

credit: 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems - Lund et al.

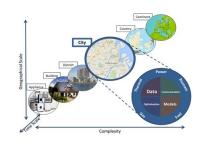
Background & Context

What will change?

0000

What the future looks like in integrated energy systems

- Renewables
- Distributed energy resources
- Power-to-heat technologies
- Bi-directional flows
- Local heat injection
- Control aspect become crucial
- Communication will play a key role



0000

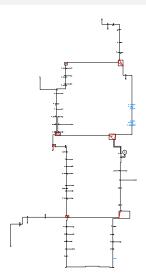
What does this field of research lack?

What challenges are faced in integrated electro-thermal systems

- Complexity
- Temporal and spatial
- Correlation of uncertainties
- Operational time scales
- What about control?
- Characterisation, aggregation & simplification

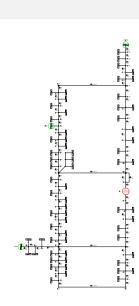
→ Properly described Use Cases (UCs) based on a holistic methodology

Overview


Key figures

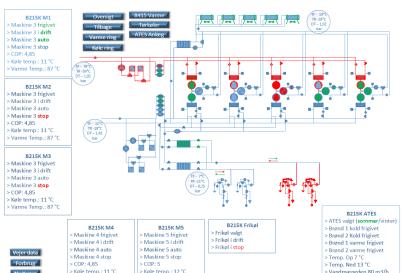
- $\bullet \simeq 11.000$ students
- \simeq 6.000 staff
- Roughly 2km²

System configuration - on Scale


System configuration - Simplified

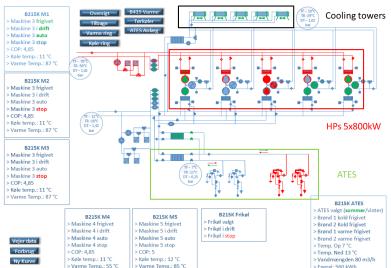
Key figures

- 68 Loads
- 126 Nodes
- Loops
- 3 critical points Bypass
- 2 supply loops
- $\simeq 60.000$ MWh/year heat


Potential

- 12MW of cooling (peak)
- 6MW of cooling installed
- Heat is wasted

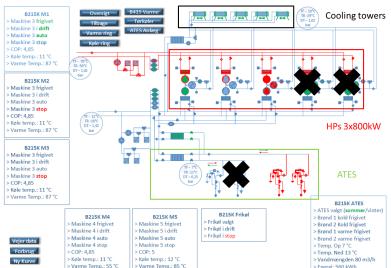
System configuration - Future Heat pump I



- > Køle temp.: 11 °C > Varme Temp.: 55 °C
- > Varme Temp.: 85 °C

- > Vandmængden 80 m3/h
- > Energi: 560 kWh

System configuration - Future Heat pump II



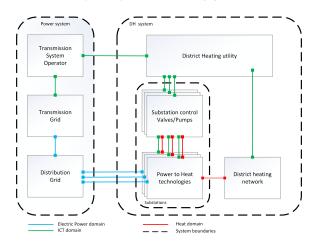
> Energi: 560 kWh

System configuration - Future Heat pump III

> Energi: 560 kWh

Mapping to DTU campus

- UC1 Decentralized feed-in in the DH network
- UC2 District heating system providing ancillary services to the electrical system
- **UC3** Electrical system providing services to the heat distribution system


Use cases

Holistic view

System configuration

Domains refer to all physical or cyber-components belonging to a class of infrastructure

UC2 - DH provides ancillary services to the electrical system (TSO/DSO):

0000

- Need for balancing ancillary services
- Proliferation of DERs (e.g EVs)
- Aggregation
- Emergence of new market platform

UC3 - Heat peak-load shaving (mainly small) - Electrical system providing service to the heating system

0000

- Heat load forecast
- Time lag (e.g due to high inertia)
- Change in operation of DH networks

Modelling tools

Requirements

Dynamic models are essential to understand interaction and characterize propagation of transient response from one system to another during normal and abnormal operation.

- Temperatures, flows, pressures, energy and power for the Heating domain.
- Energy, power, flows, voltage, frequency for the Electrical
- ICTs are beyond the physical coupling but of paramount importance when considering control aspects of these cyber-physical systems.

Modelling experience

- Modelling DH network is one "simple" thing
- Many tools exist
- Holistic vision becomes limiting
- API/co-simulation capable tools
- Co-simulation is a good candidate

Conclusion

What is next?

- UCs designed and representative of the future (hopefully)
- Dependant on external factors (i.e markets, policies, technologies)
- Maximize asset use
- DTU campus network is an interesting case study
- Data is key
- No single tool exists to address all UCs
- Co-simulation platform?
- Object-oriented, multi-domain modelling Modelica?

Conclusion

