

Securing a lower grid temperature through increased digitalizationUsing heat load forecasting and feedback from the grid

David Edsbäcker & Markus Falkvall

Interreg Oresund-Kattegat-Skagerrak European Regional Development Fund EUROPEAN UNION

Outline

- Background
 - Smart Cities Accelerator
 - Krafringens DH grid
 - Temperature control
- Securing a lower grid temperature
 - Digitalization
 - Pilot study
 - Evaluation of installation
- Conclusion of digitalization
 - Increased grid knowledge
 - Reduced grid temperature
 - Proactive instead of reactive measures
 - Economic and environmental benefits

Smart Cities Accelerator (SCA)

- Regional program Interreg-ÖKS
- Optimizing energy systems, reducing the dependency on fossil fuels
- Duration: Sept 2016-Feb 2020
- Budget: 6 468 035 Euro, 50% co-funded
- 6 technical themes
- Kraftringen: Integration of low-temperature district heating in urban districts

Kraftringens' DH-grid

- Srd generation DH
- Total length of grid: 1 050 Km
 - 50 000 households
- Annual heat delivery: 1 100 GWh/year
 - Örtofta 500 GWh/year
 - CHP: 150 GWh electricity
 - 100% renewable production
- Heat losses grid: 8-15%

Existing grid temperature control

- Based on a static outdoor temperature curve
- No feedback from the grid
- Large safety margins

Existing grid temperature control

Why a lower grid temperature?

- Reduced heat losses
- Increased efficiency in steam and flue gas condenser
- Increased utilization of waste heat
- Economic and environmental savings
 - 100 000 Euro/year/1 °C reduction

Securing a lower grid temperature

- Increased digitalisation
 - Feedback from grid
 - Weather forecasts
 - Time delay
 - Supply-thresholds
 - Improved production planning
 - Improved grid knowledge

Securing a lower grid temperature

Forward temperature control, SOHN

Time delay in the grid

Pilot study

- Seased on historical data (7 weeks)
- Hydraulic simulations to identify:
 - Critical points
 - Critical flow
- Limits in transmission pipes
- Three scenarios were evaluated:
 - Restrictive, ±5 °C, 80°C, -20%,
 - Restrictive but reasonable, ±8 °C, 78°C, -10%,
 - Theoretical optimal, ±10, 78°C, 0%

Pilot study – results

• Three different scenarios

• Five parameters

	El-buy [EUR]	El-sell [EUR]	Other exp. [EUR]	Fuel-cost. [EUR]	Fuel-tax [EUR]	Saving/ 7W* [EUR]	Saving/year* [EUR]
Restrictive ±5 °C, 80°C, -20%,	-1 100	42 400	- 8 800	6 300	- 13 000	25 800	103 100
Restrictive but reasonable ±8 °C, 78°C, -10%,	5 300	14 300	- 4 000	29 100	1 300	45 900	183 500
Theoretical optimal ±10, 78°C, 0%	8 100	24 400	- 1 900	26 200	2 700	59 500	238 000

*Increased turbine efficiency not included

Evaluation of installation

Evaluation of installation

Conclusion and future possibilities

- Conclusion of digitalization:
 - Increased grid knowledge
 - Reduced grid temperature
 - Proactive instead of reactive measures
 - Economic and environmental benefits
- Future scenario
 - Feedback from costumers
 - Improved load forecasting
 - Complex, big data filtration
 - Peak shaving in the grid

Thank you for your attention!

Any questions or remarks?

David Edsbäcker Project manager, Business development

Markus Falkvall Project engineer, DH distribution

