

A potential for interconnecting district heating grids in the greater Zagreb region

Dominik Franjo Dominković*, DTU Compute

Ignacio Blanco, DTU Compute Tihomir Capan, FSB @ UNIZG Goran Krajacic, FSB @ UNIZG

Outline

- 1) Regions considered
- 2) Optimization model used
- 3) Results
- 4) Sensitivity analyses
- 5) Outlook

Considered regions – district heating demand

DTU

Optimization model

- Objective function: to minimize the total <u>socio-economic costs</u> of the district heating system
 - » Considerations: annualized investment costs, O&M, fuel costs
 - » CHP operation (!!) assigning fuel costs and income from electricity sales
 - » Sunk costs already existing plants
- Variables:
 - » 1) hourly heat generation in each district heating system
 - » 2) capacities of plants including new ones
 - » 3) storage operation
- Constraints:

» Meeting DH demand in each region – sufficient capacity of plants in the system

• Implementation: Python + Gurobi solver (free for academia)

Case study assumptions

 Connection piping price assumptions from: Frederiksen, Werner: District Heating and Cooling – adjusted for inflation and currency exchange

Piping cost:		Start – up cost (M€)	Additional cost per capacity (M€/MW)
	Zapresic	7,1	0,64
	Velika Gorica	3,87	0,35

• Perfect foresight

.

- DH distribution losses modelled exogenously
- Transmission pipe loss: 5%
- Technology costs from: Technology datasheet for energy plants by Energinet and DEA
- CO2 price: 22€ / ton
- Electricity distribution and transmission fees: 40 €/MWh_{ele} (in total)

Case study – investment options

- 1) Thermal energy storage
- 2) Electric boiler and/or heat pump
- 3) Connection pipe:
 - A) Zagreb north to Zapresic
 - B) Zagreb south to Velika Gorica

	Investment cost (EUR/ MW _{heat})	Annualized investment cost (EUR/(MW year))	Fixed cost (EUR/(MW year))	Variable cost (EUR/MWh)	Total efficiency	Lifetime (years)	Discount rate
Electric boiler	75,000	7,079	1,100	0.8	98%	20	7%
Heat pump	700,000	60,067	2,000	2	400% (COP)*	25	7%
Thermal storage (per MWh)	3,000	225	8.6	0.1	98%	40	7%

DTU

Techno - economic assessments

- Two different approaches
 - 1) socio-economic costs/benefits after the possible DH system interconnection
 - » No taxes considered (except CO2)
 - » Electricity sales as an income Cropex day-ahead for 2017
 - 2) prefeasibility study 'classical' economic assessment of investment costs vs. newly available income stream
 - » Costs of proposed solutions
 - » Resulting capital costs per unit of heat sales
 - » Possible income to cover variable and fuel costs (compared to the best available alternative)

Best (cheapest) alternative heating option

	Efficiency / COP	Price per heat unit (€/MWh)
Gas boiler	98%	31.17
Solid biomass boiler	70%	42.86
Biomass – pellets	83%	48.19
Heat pump	320%*	31.88

Results (I)

Overall savings after the interconnection! But highly sensitive to electricity and gas prices

	Zagreb south and north (base case)	Zagreb and Velika Gorica	Zagreb and Zaprešić	2 and 2 DH systems connected		
Total system costs (M€)	4,37	3,29	-	3.97		
Difference (€)	0	-1.09	-	-0.41		
Cropex day ahead weighted average price for 2017: 53.81 €/MWh (source: Cropex) OK1 and DK2 on Nordpool day ahead: 30.08 and 31.97 €/MWh (source: Nordpool) Expensive! DH Zaprešić should be handled						

- Cropex day ahead weighted average price for 2017: 53.81 €/MWh (source: Cropex)
- DK1 and DK2 on Nordpool day ahead: 30.08 and 31.97 €/MWh (source: Nordpool)
- Gas price in 2017: 26 €/MWh for non-household consumers in Croatia (source: Eurostat)
- I Socio-economic costs sensitive to electricity prices > income from electricity sales around 117 M€

separately

Results (II) – 'classical' techno-economic assessment

- Velika Gorica
- Optimal investment portfolio: 972 MWh thermal storage and 20.75 MW pipe capacity (peak final energy demand: 23.48 MW)

	Storage	Connection pipe
Investment cost (€)	2,916,000	11,127,275
Annuity (€ / year)	218,727	834,647
Total O&M (€ / year)	8,359 66,017	
Total yearly costs (€/year)	1,127	7,750

	€/MWh of heat sold
Capital price to recover investment	20.5
Calculated 'room' for DH heat price*	18.7

• * compared to the best available alternative (gas and individual heat pump)

Results (III) – DH Zaprešić

- Not profitable not possible to recover variable costs (including electricity) • Connection pipe to DH Zagreb north – cannot recover even the capital costs
- Optimal investment portfolio (peak capacity: 8.32 MW): ٠
 - » Thermal storage: 98 MWh
 - » Electric boiler: 0.71 MW
 - » Heat pump: 3.82 MW (heating capacity)
- Total DH system cost: 677,700 € / year ('classical' techno-economic assessment) •

	Compared to the best available alternative	Compared to the current DH price
	€/MWh of he	eat sold
Capital price to recover investment	41.8	41.8
Calculated 'room' for DH heat price	-10.6	7.3

Interconnections vs. optimal portfolios

Connected DH systems:	All heat supplied via interconnection System costs (M€/year)	Optimal portfolio (M€/year)	Difference
Velika Gorica and Zagreb	3,93	3,29	-16.3 %
<u>Zaprešić</u> and Zagreb	5,53	5,06	-8.5 %

• Electricity prices – Danish system (lower average and higher span)

Socio-economic system costs	Only DH Zagreb (south and north) (M€)	All 4 DH systems (M€)	Difference (M€)	
Cropex ele. Prices (Croatia)	4,38	3,97	- 0.41	-a M
DK1 (western Denmark)	56,22	57,49	1.27	In total 1.60

Total annual costs for DH Velika Gorica and DH Zapresic (both inv. and running costs) ≈ 3.2 M€

• Gas prices

Gas price	Reference case - 26	41.9 €/MWh	34.6 €/MWh (2015 S2)	
DH case	€/MWh	(2013 S2)		
Only DH Zagreb (south and north) (M€)	4.38	23.92	15.01	
All 4 DH systems (M€)	3.97	24.17	14.96	

• Combination of high gas and electricity prices – total system costs (all 4 DH): 76.0 M€

Outlook

- Zaprešić enlarging DH system or looking for efficient individual solutions (heat pumps)
- DH Zagreb extremely sensitive to gas prices (and CO2 price): diversification by installing electricity driven heat generators?
- Business-economic assessment
- Risk hedging possibilities
- Solar DH possibility
- Lowering DH temperatures (low hanging fruits)
- Offering down regulation on (future) regulation markets calculating income stream
- Introducing demand response also on the demand side medium term future

Acknowledgments

- Big thanks to **HEP Toplinarstvo** for providing data on Zagreb DH grid operation
- This work was financed by CITIES project No. DSF1305-00027B funded by the Danish Innovationsfonden (Ignacio and Dominik) and KeepWarm project that received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 784966 (Goran and Tihomir)

•Thank you!