A Hierarchy of Aggregators and Controllers for Future Electric Energy Systems

Henrik Madsen, Technical University of Denmark

DTU Compute Department of Applied Mathematics and Computer Science

Wind integration in Denmark

• Notice – wind only:

Key figures for wind power*

	2013	2012
Wind power generation	11.1 billion kWh	10.3 billion kWh
Electricity consumption (including loss in the electricity grid)	33.5 billion kWh	34.1 billion kWh
Wind power share of electricity consumption the entire year	33.2%	30.1%
Wind power share of electricity consumption in December	54.8%	33.5%
Wind power capacity at the end of the year	4,792 MW	4,166 MW
Energy content of the wind	Approx. 93% of a standard year	Approx. 102% of a standard year

DTU Compute Department of Applied Mathematics and Computer Science

Centre for IT Intelligent Energy Systems

Solar district heating in Denmark

Control and Storage by Energy Systems Integration

- Operational (simplified) models, optimization and control
- (Virtual) storage principles:
 - Buildings provide storage up to, say, 10 hours ahead
 - District heating systems lead provide storage up to 2-3 days ahead
- Gas systems provide seasonal storage

Department of Applied Mathematics and Computer Science

Control/Optimization Principles

Control/Opt. Principles

Day Ahead:

- Stoch. Programming based on eg. Scenarios
- Cost: Related to the market (one or two levels)
- Operational optimization also for the grid

Direct Control:

- Actuator: Power
- Cost: eg. MV, LQG, EMPC, ... (a single large problem)
- Two-way communication
- Models for DERs are needed
- Constraints for the DERs (calls for state est.)
- Contracts are complicated

Indirect Control:

- Actuator: Price
- Cost: GPC, LQG at high level, VaR-alike
- Cost: E-MPC at low (DER) level, ...
- One-way communication
- Models for DERs are not needed
- Simple 'contracts'

Direct vs Indirect Control

Level	Direct Control (DC)	Indirect Control (IC)
III	$\min_{x,u} \sum_{k=0}^{N} \sum_{j=1}^{J} \phi_j(x_{j,k}, u_{j,k})$	$ \min_{\hat{z}, p} \sum_{k=0}^{N} \phi(\hat{z}_k, p_k) $ s.t. $\hat{z}_{k+1} = f(p_k) $
IV	$\downarrow_{u_1} \dots \downarrow_{u_J} \uparrow_{x_1} \dots \uparrow_{x_J}$ s.t. $x_{j,k+1} = f_j(x_{j,k}, u_{j,k}) \forall j \in J$	$\min_{u} \sum_{k=0}^{N} \phi_j(p_k, u_k) \forall j \in J$ s.t. $x_{k+1} = f_j(x_k, u_k)$

Table 1: Comparison between direct (DC) and indirect (IC) control methods. (DC) In direct control the optimization is globally solved at level III. Consequently the optimal control signals u_j are sent to all the J DER units at level IV. (IC) In indirect control the optimization at level III computes the optimal prices p which are sent to the J-units at level IV. Hence the J DERs optimize their own energy consumption taking into account p as the actual price of energy.

Forecast requirements

Day Ahead:

- Forecasts of loads
- Forecast of Grid Capacity (using eg. DLR)
- Forecasts of production (eg. Wind and Solar)

Direct Control: .

- Forecasts of states of DERs
- Forecasts of load

Indirect Control:

- Forecasts of prices
- Forecasts of load

Which type of forecast to use?

- Point forecasts
- Conditional mean and covariances
- Conditional quantiles
- Conditional scenarios
- Conditional densities
- Stochastic differential equations

DTU Compute Department of Applied Mathematics and Computer Science

Interactions between power, gas, DH, and biomass systems

Centre for IT Intelligent Energy Systems

Department of Applied Mathematics and Computer Science

Ongoing projects

- Temperature control in houses (Grundfos, ENFOR)
- HVAC systems (Grundfos)
- Supermarket cooling (Danfoss, UCD)
- Consumption in family houses (TI, ENFOR, ...)
- District heating networks (Cowi, ENFOR, Rambøll, DFF-EDB)
- Combined Heat and Power plants (Dong Energy)
- Heat Pumps in District Heating networks (HOFOR, Cowi, ENFOR)
- Rainfall Run-off Systems (DHI and Rambøll)
- Wastewater treatment plants (Krüger)
- *"*.....

Case study

Electrical Heating of Buildings; Control of Load by Price

Price responsivity

Flexibility is activated by adjusting the temperature reference (setpoint)

- **Standardized price** is the % of change from a price reference, computed as a mean of past prices with exponentially decaying weights.
- **Occupancy mode** contains a price sensitivity with its related comfort boundaries. 3 different modes of the household are identified (work, home, night)

Two data sources

Olympic Pensinsula project

- 27 houses during one year
- Flexible appliances: HVAC, cloth dryers and water boilers
- 5-min prices, 15-min consumption
- **Objective:** limit max consumption

DTU Compute

Department of Applied Mathematics and Computer Science

Simulation framework

- Modular design
- Runge-Kutta solver (diff. equations)
- Scalable (linear computation time)
- Variable sampling rate CITIES Centre for IT Intelligent Energy Systems

Aggregation (over 20 houses)

Identify price response

DTU Compute Department of Applied Mathematics and Computer Science

Response on Price Step Change

Model inputs: price, minute of day, outside temperature/dewpoint, sun irrandiance

Simulated

DTU Compute

Olympic Peninsula

Adaptive control setup

As the systems changes over time

Control performance

With a price penality avoiding its divergence

- Considerable reduction in max consumption
- Mean daily consumption shift

Contracts / Products

Centre for IT Intelligent Energy Systems

Department of Applied Mathematics and Computer Science

Thanks to

Jacopo Parvizi, Niamh O'Connell, John Bagterp Jørgensen, Rasmus Halvgaard, Olivier Corradi, Henning Ochsenfeld, Tryggvi Jónsson, Sven Creutz Thomsen,

