

Price Responsive Predictive Control of heat pumps in a family house

 $f(x+\Delta x) = \sum_{i=1}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}$

Jacopo Parvizi

Consortium Meeting 26-05-2015

DTU Compute Department of Applied Mathematics and Computer Science

2818284

Outline

- Price responsive units
- •Test Facility
- •System's Architecture
 - Components
 - Communication

Models
Controller
Results of experiments

Why Price Responsive Units?

- The basic motivation of applying the Economic Model Predictive Control framework, in energy efficient buildings, is to have the ability to compute optimal control actions incorporating weather and consumption forecasts.
- Wind power uncertainty can be managed at a lower cost by adjusting electricity consumption in case of wind forecast errors, which is another way in which demand response facilitates the integration of intermittent renewables.
- The short-term supply and demand are balanced during periods of high penetration of renewable energy.
- This new control scheme started flourishing in power systems applications related with Smart Grids, but it is at his infant stage.
- The focus of this work was on the implementation of an EMPC controller to reduce the energy costs in a residential family house.

Energy Markets for Price Responsive Units

Energy Markets for Price Responsive Units

Test Facility

Test Facility

Heating System

Hot Water Tank

600L Hot Water Tank

- Stratified
- Multiple Connections
- Good with Solar Thermal System

10

Hot Water Tank - Sensors

Solar Thermal Collector

- Wall mounted. 7.2 m2
- Approx. 90% effectiveness compared to the optimal tilt

Heat Pump

- Delivers from 1.5 to 7 kW
- Variable speed compressor
- Grundfos pumps
- 300m ground pipe

CITIES Centre for IT Intelligent Energy Systems

Domestic hot water and district heating

- Sonnenkraft / Grundfos Fresh water module
- District heating connected as backup

Sensors

- Weather Station
 - Davis Vantage Pro2 Plus
- Heat Meters
 - Kamstrup Multical in water circuits
 - Sontex Multical in brine circuits
- Wireless temp. sensors
 - Room and floor Temps

Tank Model

Tank Model

Economic MPC

$$\begin{split} \min_{\{u_k\}_{h=0}^{N-1}} \phi &= \sum_{h=0}^{N-1} \hat{p}_{k+h|k}^T u_{k+h|k} + \sum_{h=1}^N \rho v_{k+h|k} \\ \text{s.t.} \quad x_{k+1+h|k} &= A x_{k+h|k} + B u_{k+h|k} + E d_{k+h|k} \\ y_{k+h|k} &= C x_{k+h|k} \\ u_{min} &\leq u_{k+h|k} \leq u_{max} \\ \Delta u_{min} &\leq u_{k+h|k} \leq u_{max} \\ \Delta u_{min} &\leq \Delta u_{k+h|k} \leq \Delta u_{max} \\ y_{k+h|k} + v_{k+h|k} \geq z_{k+h|k}^{min} \\ y_{k+h|k} - v_{k+h|k} \leq z_{k+h|k}^{max} \\ h \\ x = T_{tank} \quad v_{k+h|k} \geq 0 \end{split}$$

• Output and state *y* = • Disturbances $d = [\hat{Q}_{sun}, \hat{Q}_{house}]$

- Electricity price *p*

 $k \in \{0, 1, \dots, N\}$. $T_s = 1$

Advanced Controller

Results - Economic Savings Against Flat Tariff

Results - Energy Consumption

Conclusions

- » In this experiment we implemented an Economic MPC that takes into account not only the weather predictions. Other energy sources are forecasted providing better performances
- » Economic savings are up to 24%
- » Prediction horizon doesn't influence the savings due to limited storage capacity
- » Missing forecasts must be computed locally
- » Houses with higher demand require additional heat sources (e.g electric heater)
- » Models and controller parameters need to be automated

Thank you for your attention

Jacopo Parvizi jacop@dtu.dk www.imm.dtu.dk/~jacop

Department of Applied Mathematics and Computer Science Technical University of Denmark