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Transmission Network
IEEE 300 bus network. 300 nodes, 411 edges.

Figure 1. Topology of the IEEE 300 node system

has 411 branches, and average degree (< k >) of 2.74.
Two of the branches are parallel lines, so the graph size
is: |G300| = {300, 409}. The Eastern Interconnect (EI)
data come from a NERC planning model for 2012. The
NERC EI planning models are known as MMWG (Multire-
gional Modeling Working Group) cases, and are classified
as “Critical Energy Infrastructure Information” by the US
Department of Energy. The authors have obtained permis-
sion to use these data for research purposes. The EI model
has 49,907 buses, though in our model 310 of these are
isolated from the larger sub-components. After removing
the isolates and parallel branches, we obtain a graph (GEI )
with 49,597 vertices, 62,985 links and an average degree
< k >= 2.54.

2.2. Synthetic networks

To show how power grids differ from other network
structures we generate three graphs with similar sizes to the
IEEE 300 and EI graphs: A small-world [3], preferential at-
tachment (PA) [2], and a random graph [1]. Each graph is
generated to have the same number of nodes and nearly the
same number of branches as the power grid.

The random graph is generated using the standard algo-
rithm [1, 4] with a fixed number of nodes and links.

To generate a preferential attachment/scale-free (PA)
graph with roughly n nodes and m links we modify the al-
gorithm described in [2] somewhat. For each new node a
we initially add one link between a and an existing node b
using the standard roulette wheel method. Specifically node
b is selected randomly from the probability distribution
Pa⇥b = kb/

⌅
c kc. After adding this initial link a second is

added with probability m/n� 1. Thus the addition of each
new node results in an average of 1 + (m/n � 1) = m/n
new links, producing a preferential attachment graph with

n nodes and roughly m links.
The small-world model is argued in [3] to bear some re-

semblance to power grids. To test this we generate a regular
lattice with n nodes and approximately m links. The initial
links in the regular lattice are created in roughly the same
way as the modified PA graph above. With each new node,
a link is created to a neighboring node (for node a, the first
link is to a � 1). A second link is then created to node
a� 2 with probability m/n� 1, thus giving approximately
m links in total. Note that a � 1 and a � 2 need to be ad-
justed for the first two nodes in the graph. After generating
the regular lattice in this manner random re-wiring proceeds
according to the method described in [3] until the diameter
is approximately the same as the corresponding power grid.

2.3. Measures of graph structure

There are many useful statistical measures for graphs.
Among the most useful are degree distribution [2], charac-
teristic path length [3], graph diameter [8], clustering co-
efficient [8], and degree assortativity [2]. These measures
provide a useful set of statistics for comparing power grids
with other graph structures.

The probability mass function (pmf) for node connectiv-
ity, or degree distribution, describes the diversity of connec-
tivity in a graph. While the measure has a long history, re-
cent results showing that many real networks have a power-
law degree distribution (so-called scale-free networks [2])
has emphasized the value of the measure. The extent to
which the degree distribution is fat-tailed indicates the num-
ber of hubs within the network. The degree of node i in a
graph with adjacency matrix A is:

ki =
n⇧

j=1

aij (1)

and the degree distribution is Pr(k = x) = nk/n, where nk

is the number of nodes of degree k. Often it is more con-
venient to work with the complementary cumulative distri-
bution function (ccdf). For scale free networks, where the
power-law tail starts at xmin, the ccdf is:

Pr(k ⇤ x) =
x�

min

x�+1

If the degree distribution is exponential, as found in random
graphs, a minimum value Weibull distribution provides a
better fit to the data:

Pr(k ⇤ x) = e�( x�xmin
⇥ )�

Many real networks show substantial clustering among
nodes. Watts and Strogatz [3] report that the network of
collaborations among film actors and the neural structure of
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ISO: 
Independent System Operator 

RTO

ISO

FERC Federal Energy Regulatory Commission

In the US is an organization that is responsible for moving 
electricity over large interstate areas; coordinates, controls 
and monitors an electricity transmission grid that is larger 
with much higher voltages than the typical power company's 
distribution grid.

Is an organization formed at the direction or recommendation 
of the FERC, in the areas where an ISO is established, it 
coordinates, controls and monitors the operation of the 
electrical power system, usually within a single US State, but 
sometimes encompassing multiple states.

ISO New England Inc. (ISO-NE) is an independent, non-profit RTO, 
serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode 
Island and Vermont. Its Board of Directors and its over 400 employees 
have no financial interest or ties to any company doing business in the 
region's wholesale electricity marketplace.



Uncertainties
• WEATHER: demand & supply (especially renewables)

• industrial-commercial environment (demand)

• seasonal, day of the week, time of the day

• contingencies: transmission lines, generators
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Energy Sources

• nuclear energy

• hydro-power

• thermal plants (coal, oil, shale oil, bio, rubish, . . . )

• gas turbines (natural gas, from ”cracking’)

• renewables (wind, solar, ..., ocean waves)

different characteristics



Market time line 

Ref: A. Botterud, J. Wang, C. Monteiro, and 
V.  Miranda  “Wind  Power  Forecasting  and  
Electricity  Market  Operations,”  available  at  
www.usaee.org/usaee2009/submissions/Onl
ineProceedings/Botterud_etal_paper.pdf 

RAC process closes; 
new units notified. 

2000 
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between a rock and a hard place

MIP-CPLEX & 
good ISP-codes (S. Sen & Co.) 

can only handle effectively 
problems of  moderate size 

!
recall “deadlines”



Our “ARPA-e Team”
Sandia National Labs: Jean-Paul Watson, César Silva-Monroy, Ross 
Guttromsom (team builder), John Siirola, William Hart, … 

Iowa Sate University: Sarah Ryan, Dinakar Gade, Yonghan Feng, Youngrok Lee 

University of  California, Davis: David Woodruff, Roger J-B Wets, Ignacio Rios, 
Kai Spürkel, Fabian Rüdel, (+ Chuangyin Dang, Julia Peyre … later this year) 

Alstom: Kwok Cheung (+ …) 

@ New-England ISO: Eugene Litvinov (& Joe Mercer, William Callan) 

Unofficial associates: Johannes Royset (NPS), Hoa Chen (UCD) - uncertainty 
design



Abstract Unit Commitment

Minimize
X

k2K

X

j2J

cPj (k) + cuj (k) + cdj (k) with

X

j2J

pj(k) = D(k), 8k 2 K

X

j2J

p̄j(k) � D(k) +R(k), 8k 2 K

pj(k), pj(k) 2 �, 8j 2 J, 8k 2 K

� region of feasible production, all generating units, all time periods.
The specific nature of � is model-dependent.
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adjust node 
balance eq’ns

min. expectation 
(actually: risk measure) 

with penalties



Aggregation Principle in  
Stochastic Optimization

⇒ to Progressive Hedging Algorithm



Here-&-Now vs. Wait-&-See

Basic Process: decision ➙ observation ➙ decision 

Here-&-Now problem!                                           
not all contingencies can be “protected” by 
available instruments, i.e. 

Wait-&-See problem:                                                 
instruments are available to cover all contingencies 
choose            after observing  𝝃     

x1 ξ xξ
2↝ ↝

x1

(xξ
1, xξ

2 )



Stochastic Optimization:  
  Fundamental Theorem

A here-&-now problem can be 
transformed in a wait-&-see 
problem by introducing the

appropriate `contingencies’ costs 
(price of  nonanticipativity)
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min E f0 (ξ, x1, xξ
2 ){ }

       x1 ∈ C1 ⊂ !n ,
     xξ

2 ∈ C 2 (ξ , x1),∀ξ .



Price of Nonanticipativity

min E f0 (ξ, x1, xξ
2 ){ }

       x1 ∈ C1 ⊂ !n ,
     xξ

2 ∈ C 2 (ξ , x1),∀ξ .

Explicit non-anticipativity

minE f0 (ξ , xξ
1 , xξ

2 ){ }
       xξ

1 ∈ C1 ⊂ !n ,

     xξ
2 ∈ C 2 (ξ , xξ

1 ),∀ξ .



Price of Nonanticipativity

min E f0 (ξ, x1, xξ
2 ){ }

       x1 ∈ C1 ⊂ !n ,
     xξ

2 ∈ C 2 (ξ , x1),∀ξ .

Explicit non-anticipativity

minE f0 (ξ , xξ
1 , xξ

2 ){ }
       xξ

1 ∈ C1 ⊂ !n ,

     xξ
2 ∈ C 2 (ξ , xξ

1 ),∀ξ .

xξ
1 = E xξ

1{ } ∀ξ



Price of Nonanticipativity

min E f0 (ξ, x1, xξ
2 ){ }

       x1 ∈ C1 ⊂ !n ,
     xξ

2 ∈ C 2 (ξ , x1),∀ξ .

Explicit non-anticipativity

minE f0 (ξ , xξ
1 , xξ

2 ){ }
       xξ

1 ∈ C1 ⊂ !n ,

     xξ
2 ∈ C 2 (ξ , xξ

1 ),∀ξ .

xξ
1 = E xξ

1{ } ∀ξ

wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0multipliers



Price of Nonanticipativity

min E f0 (ξ, x1, xξ
2 ){ }

       x1 ∈ C1 ⊂ !n ,
     xξ

2 ∈ C 2 (ξ , x1),∀ξ .

Explicit non-anticipativity

minE f0 (ξ , xξ
1 , xξ

2 ){ }
       xξ

1 ∈ C1 ⊂ !n ,

     xξ
2 ∈ C 2 (ξ , xξ

1 ),∀ξ .

xξ
1 = E xξ

1{ } ∀ξ

wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0

min E f0 (ξ , xξ
1, xξ

2 )+ 〈wξ , xξ
1 〉 − 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈ C1, xξ
2 ∈ C2 (ξ, xξ

1 )

multipliers



Price of Nonanticipativity

min E f0 (ξ, x1, xξ
2 ){ }

       x1 ∈ C1 ⊂ !n ,
     xξ

2 ∈ C 2 (ξ , x1),∀ξ .

Explicit non-anticipativity

minE f0 (ξ , xξ
1 , xξ

2 ){ }
       xξ

1 ∈ C1 ⊂ !n ,

     xξ
2 ∈ C 2 (ξ , xξ

1 ),∀ξ .

xξ
1 = E xξ

1{ } ∀ξ

wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0

min E f0 (ξ , xξ
1, xξ

2 )+ 〈wξ , xξ
1 〉 − 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈ C1, xξ
2 ∈ C2 (ξ, xξ

1 )

multipliers



Progressive Hedging Algorithm

0. wξ
0  such that E wξ

0{ }= 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν )∈ argmin f0 (ξ;x1, x2 )− 〈wξ

ν , x1〉

                    x1 ∈ C1 ⊂ !n1 , x2 ∈ C 2 (ξ , x1)⊂ !n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 =wξ

ν + ρ xξ
1,ν − x1,ν&' (),  return to 1. with ν =ν +1
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0. wξ
0  such that E wξ

0{ }= 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν )∈ argmin f0 (ξ;x1, x2 )− 〈wξ

ν , x1〉

                    x1 ∈ C1 ⊂ !n1 , x2 ∈ C 2 (ξ , x1)⊂ !n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 =wξ

ν + ρ xξ
1,ν − x1,ν&' (),  return to 1. with ν =ν +1

Convergence:  add a proximal term

    f0 (ξ;x1, x2 )− 〈wξ
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  eminently parallelizable



PH: Implementation issues
implementation: choice of ρ  ... scenario (×), ith-decision (i) dependent
(heuristic) extension to problems with integer variables
non-convexities:  e.g. ground-water remediation with non-linear PDE recourse

asynchronous

partitioning (= different information feeds)
minE f (ξ , x){ }  , f (ξ , x)= f0 (x)+ιC (ξ ,x )(x)

S = Ξ1,Ξ2,…,ΞK{ }  a partitioning of Ξ, pk = P(Ξk )

E f (ξ , x){ }= pnE f (ξ , x) Ξn{ }
n∑    (Bundling)

defining g(k, x)=E f0 (ξ , x) Ξn{ } if x ∈ Ck = Cξ
ξ∈Ξk

∩

solve the problem as: min pkg(k, x)
n=1

N
∑

Bundling



PH: binary variables
minhc, xi+
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x 2 C1, y⇠ 2 C2(�, x) 8 � 2 �
binary (integer) variables: some x’s, some y⇠’s.



PH: binary variables
minhc, xi+

P
⇠2� p⇠hq⇠, y⇠i such that

x 2 C1, y⇠ 2 C2(�, x) 8 � 2 �
binary (integer) variables: some x’s, some y⇠’s.

Choice of ⇥ ⌅ ⇥j depending on cj , |xj |, ...
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PH: binary variables
minhc, xi+

P
⇠2� p⇠hq⇠, y⇠i such that

x 2 C1, y⇠ 2 C2(�, x) 8 � 2 �
binary (integer) variables: some x’s, some y⇠’s.

Enough variables fixed ⇒ clean up with CPLEX-MIP

Choice of ⇥ ⌅ ⇥j depending on cj , |xj |, ...

Variable Fixing, in particular binaries, xj(s) = constant (k iterations)
Variable Slamming: aggressive variable fixing xj(s) ⇤ constant (& cjxj(s))
“Su�cient” variable convergence ⇥ for small values of cjxj(s)

Termination criterion: variable slamming when x�
j (�)� x�+1

j (�) small

Detecting cycling behavior: (simple) hashing scheme

   and augmentation



Error Bounds
f (ξ , x)= f0 (ξ , x1, x2 )  if  x1 ∈ C1, x2 ∈ C 2 (ξ , x1); +∞ else
Stochastic Program (P): 

minx∈M E f (ξ , x){ }  such that x1 ≡E{xξ
1}

Dual Program (D)

max
w∈M* E − f *(ξ ,wξ ){ }  such that E{wξ} = 0

weak duality holds: infP ≥ sup D⇒  for any feasible ŵ

− f *(ξ , ⌢wξ )=minx f (ξ , x)+ ⌢wξ , x1 , x ∈ !n1+n2'
(

)
*

yields a lower bound for (P),  better if ⌢wξ  is near-optimal
⇒  rely on w*  of PH-algorithm to generate lower bound.
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CT load exploratory process





Robust decisions in 
a stochastic environment  

demand 
a robust model 

of the uncertainty.
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... to load on day D
to be delivered-load: l(t)
=  fcn temp(τ ≤ t), dewpt(τ ≤ t), clcover(τ ≤ t), wind(τ ≤ t)( ), t ≤ 24



... to load on day D
to be delivered-load: l(t)
=  fcn temp(τ ≤ t), dewpt(τ ≤ t), clcover(τ ≤ t), wind(τ ≤ t)( ), t ≤ 24

But that wouldn’t capture the uncertainty! 
one would expect:
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from predictions on day D-1 
to load forecasts on day D

THE DATA

NOAA: actuals



“Realistic” Forecasts



“Realistic” Forecasts

(artistic conception)
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Troubling Issues

weather prediction @ 11 a.m.         better @ 11 p.m. 
... but too late!

surface wind  =>?   power wind

cloud cover (no historical prediction data) -- only 
actuals are available

 model to be used for the stochastic load 
predictions model: SDE, time series, ???    all 

inappropriate
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Stochastic Load Process 
➾  Scenarios
a) segmentation: season + day characteristics

b) functional regression for given segment
c) hourly distribution of errors per segment

HOW THIS IS CARRIED OUT ?
d) conditional distribution of errors => process

e) discretization of the process => scenarios



Segmentation

~ similars, analogs (± standard)                        to enrich 
data: Wednesday rule,   zone rule? 

seasons: (factor analysis, ‘heuristics’) 

± spring & fall : temperature 

winter: temperature & cloud cover 

summer: temperature & dew point 

wind power (at present): handled independently            based 
on 3TIER analogs                                       total load ≈ load 

scenario - wind power scenario 
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from day d-1 ⇒  possible load on day d d  = 14, ...,18
1. regression(temp. curve, humid. curve) ⇒  'expected' load curve
2. get distribution of the errors (hourly, .... at any time)



from day d-1 ⇒  possible load on day d d  = 14, ...,18
1. regression(temp. curve, humid. curve) ⇒  'expected' load curve
2. get distribution of the errors (hourly, .... at any time)



The Regression Problem

find  a function r  that minimizes errors (with respect to ! )

r (tmpd ,h ,humd ,h )( ) −  loadd ,hhours h in day∑days d in segment∑

an infinite dimensional problem!
Our approach:  rely on 2-dimensional epi-splines ("innovation")
   - epi-splines approximate with arbitrary accuracy 'any' function
   - epi-splines are completely determined by a finite # of parameters
   - allows (via constraints) to include 'soft' (non-data) information



The Errors Distributions

Given segment # and associated r,  for fixed hour h
ed ,h = loadd ,h − r (tmpd ,h ,humd ,h )( ), d ∈segment #

⇒ estimate the density fh of the errors (at h in segment #)
     yields an overall estimate of the 'volatility' (in fact, more)
     another infinite dimensional problem & data might be scarce

Our approach: estimation via exponential epi-spline (novel):
    - fh = exp(-sh ), sh  an epi-spline (⇒ fh ≥ 0)
    - same properties as epi-spline, could include unimodality restriction



... et voilà!
regression curve & sampling from errors distribution



... et voilà!
regression curve & sampling from errors distribution

a. how many samples? 103, 105,...?
b. conditioning: @10 o'clock above or below the regression curve



Approximation foundation
Function Identification Problem:    optim., diff. eqtns, processes, ...

(FIP) find f ∈ argmin ψ( f ) f ∈ F ⊂F{ }
here F =  lsc-fcns(Rn )    more generally a Polish space

F -approximation: aw-topology ~ dl( f ,g) epi-distance



Approximation foundation
Function Identification Problem:    optim., diff. eqtns, processes, ...

(FIP) find f ∈ argmin ψ( f ) f ∈ F ⊂F{ }
here F =  lsc-fcns(Rn )    more generally a Polish space

F -approximation: aw-topology ~ dl( f ,g) epi-distance

ρ

dlρ(f, g)

gf
f

g dlρ(f, g)

ρ d(x, epi f)

d(x, epi g)

x
dl( f ,g)= dlρ ( f ,g)e

−ρ

0

∞

∫ dρ



Epi-splines
R = R1,…RN  open{ }partitions (no overlap) B = clRkk=1

N
∪ (closed)

poly p ("n ) defined by np ≤ (n+ p)!/ (n!p!) real parameters

lsc epi-spline s :!n →! with partition R of order p ∈ ! 0if
   on each Rk s ∈ poly p (!n ),     s ≡∞ on !n \ B,      s is lsc on !n

then s ∈ e-spln
p R( )……⊂  lsc-fcns(B)⊂  lsc-fcns(!n )

   



Epi-splines
R = R1,…RN  open{ }partitions (no overlap) B = clRkk=1

N
∪ (closed)

poly p ("n ) defined by np ≤ (n+ p)!/ (n!p!) real parameters

lsc epi-spline s :!n →! with partition R of order p ∈ ! 0if
   on each Rk s ∈ poly p (!n ),     s ≡∞ on !n \ B,      s is lsc on !n

then s ∈ e-spln
p R( )……⊂  lsc-fcns(B)⊂  lsc-fcns(!n )

   
1.∀p ∈ ! 0,  infnite refinement R ν{ }

ν=1

∞
 of closed B ⊂ !n

e-spln
p

ν=1

∞

∪ (R ν ) is dense in lsc-fcns(B)

refinements: boxes, simplexes, ...
2. When (FIPν ) →epi (FIP), sk ∈ argmin(FIPνk ), dl(sk , f )→ 0
     then f ∈ argmin(FIP).
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a few applications
curve fitting: F known properties of  the curve

financial curves: yield curve, discount factor curve

variogram: geostatistics, deposit dispersion

uncertainty quantification in a harmonic excitation

building stochastic processes: commodities prices, e-loads, …

density estimation: 𝜓 max. likelihood (captures observations),              
F soft information: support, shape, bounded moments, 
Bayesian, ..



Conditioning & Discretization

a. identify all observed load curves in each sub-segment
b. for each sub-segment: re-calculate regression and errors distribution
c. repeat for each sub-segment @ (say, 1 p.m.) ⇒  sub-sub-segment

+ errors

- errors

➾Scenarios
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Wind & Solar

wind and solar: complementary balance ± 

wind scenarios: 3TIER analogues (ARPA-e 😃) 

scenario building (state-of-the-art) 

stochastic process building with soft information 
coming from the dynamics (started)



Building Wind Scenarios

errors: et
d = at

d − ft
d (Bonneville Power Administration)

1. distribution of the forecast for hours of interest
2. segment errors (per day) according to forecast wind power
3. compute conditional error distribution

Scenarios: - generate scenario for the errors
                 - generate scenario paths (discrete process)
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