

CITIES Consortium meeting May 2014

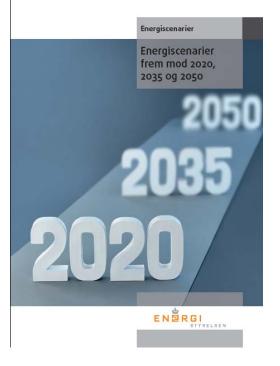
District heating in future smart energy systems

Peer Andersen, Fjernvarme Fyn

Subjects in presentation

- 1. Challenges for District Heating (DH) in future energy systems
- 2. Strengths and opportunities for DH in future energy systems
- 3. "Smart grid in DH" a project proposal
- 4. District Heating in Odense short introduction to Fjernvarme Fyn as a test and demonstration site
- **5.** Some wishes for results of CITIES

Challenges for District Heating (DH) in future energy systems


Phase-out of CHP production.

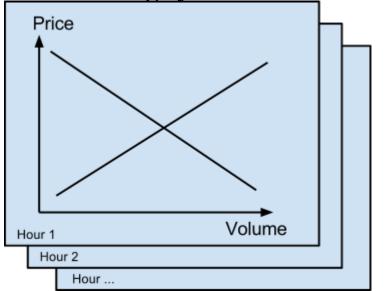
Energy scenarios 2020-2050, Energistyrelsen 2014. Only waste fired CHP in 2050 in "wind scenario"

Increase in windpower production. 400 MW / year 2020-2050 in "wind scenario"

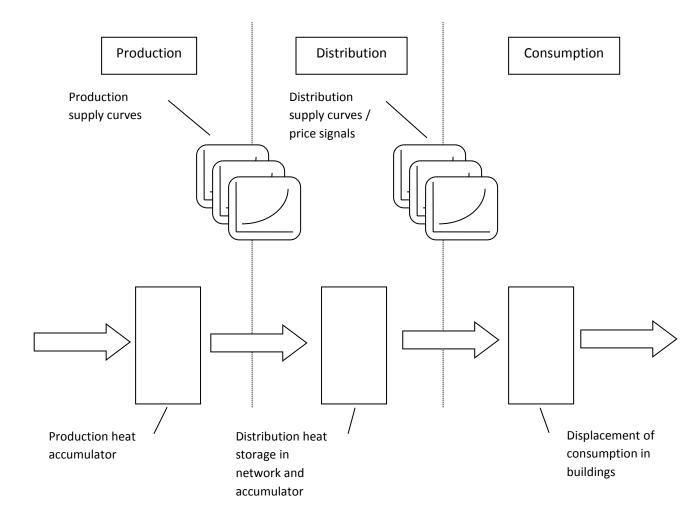
Increasing complexity in production composition
 Production from diverse VE sources.

Strengths and opportunities for DH in future energy systems

- **DH** as an energy carrier is flexible in regard to energy sources.
- **DH** can exploit all kind of surplus heat
- Use of large heat storages, including distribution network

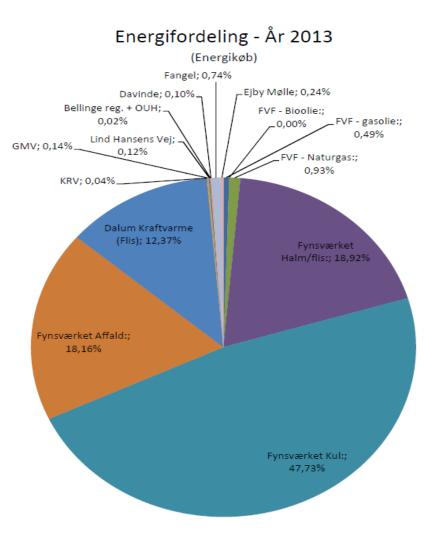

Utilization of large scale advantages compared to individual heating solutions

- In 2013 Fjernvarme Fyn worked together with LEC, AffaldVarme Aarhus, Danfoss, Enfor, DTU, Grontmij, Rambøll, Eurisco and Fjernvarmes Udviklingscenter on an EUDP application "Smart grid in district heating"
- The application was rejected allegedly because of missing business potential Nevertheless, we still think the project idea was good.
- The project proposal is about integrated modelling, forecasting and control of 1) production 2) distribution and 3) consumption of district heating
- The basic idea is, that information / data can be exchanged between the 3 levels of the entire heating system and in that way avoiding sub-optimization
- Integration of the district heating system with the surrounding energy system through the electricity market


- **DH Production: time varying prices / supply curves**
- Supply curves on a hourly basis.
- Calculated on the basis of electricity price forecasts, CHP production, heat pump production, forecasts for surplus heat, solar thermal and other heat sources in the district heating system

- **DH** Consumption: Development of a new building heat controller:
- Cost optimization of heating of buildings based on forecast of consumption and time varying prices / price signals. Utilization of heat capacities in buildings to time shift the consumption without exceeding comfort limits for indoor temperature
- DH Distribution: Optimization of supply temperature and price signals. Minimizing the total costs which is not necessarily the same as minimizing the energy loss because of time varying production prices.

Key Figures – FvF

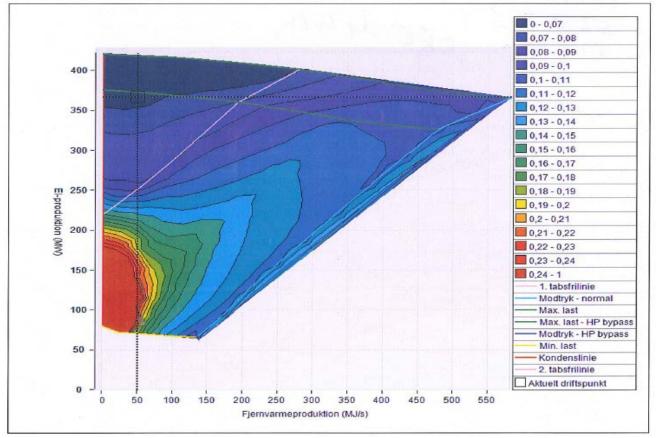

Max demandNumbers of connectionsYearly production		780 MJ/s 61.000	
		2.1 Mio MWh	
Temperture		60-95 °C	-
Max pressure			
Transmission	25 bar		2 - 4
 Distribution 	6 bar		h water and
Pipe length			
 Transmission 	50 km tr	racé	
 Distribution 	2.000 kr	n tracé	
• Peak load plants		22	
• Boilers		56	
Capacity		740 MJ/s	
Supply coverage	in supply ar	ea	
 District heating 		98 %	
 Natural gas an 	d others	2 %	

Heat production 2013

	År 2013	
Leverandør	GJ	%
FVF - gasolie:	38.006	0,49%
FVF - Bioolie:	0	0,00%
FVF - Naturgas:	72.351	0,93%
Fynsværket Halm/flis:	1.477.598	18,92%
Fynsværket Kul:	3.726.907	47,73%
Fynsværket Affald:	1.418.239	18,16%
Dalum Kraftvarme (Flis)	965.712	12,37%
KRV	3.375	0,04%
GMV	10.911	0,14%
Lind Hansens Vej	9.045	0,12%
Bellinge reg. + OUH	1.676	0,02%
Davinde	8.082	0,10%
Fangel	57.714	0,74%
Ejby Mølle	18.800	0,24%
Total:	7.808.417	100%

Side 10

Fynsværket – Vattenfall


Fynsværket - Vattenfall

IRON diagram blok 7 FV

1The Iron Diagram for Odense CHP station – the relationship between its power output and the heat output. MWe electrical power vertical axis, MWth heat on the horizontal axis

Unloading of straw

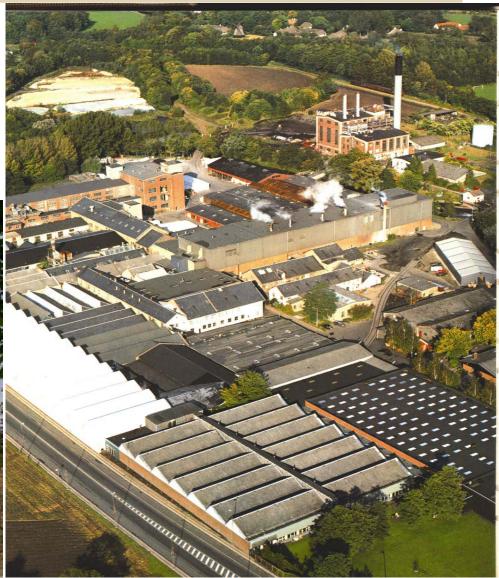
Waste Incineration.

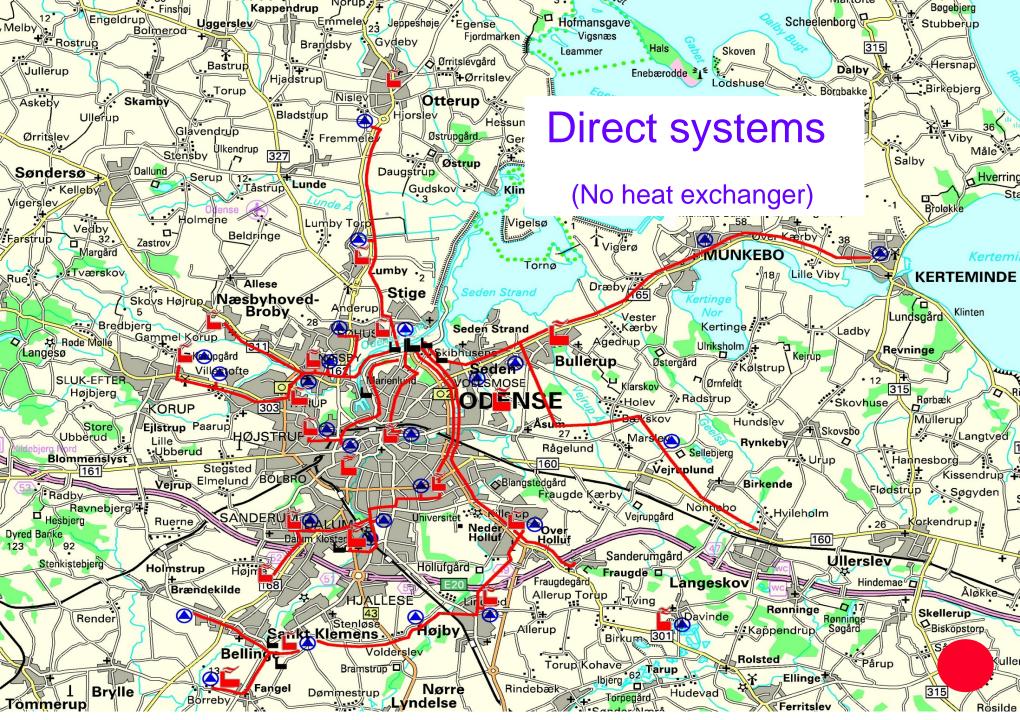
- 284.000 ton Waste/year ~ 100.000 t coal
- **ODV 11** Comm. 1996, 5 MWe
- ODV 12 Comm. 1996, 5 Mwe
- ODV 13 Comm. 2000, 29 MWe
- Total 32 t Waste/h.
- 22 % of total heat demand.
- CO₂ reduction: 200,000 t per year.

14.5 MJ/s 14.5 MJ/s 35 MJ/s

The storage tank at the power plant – one of the largest in Europe

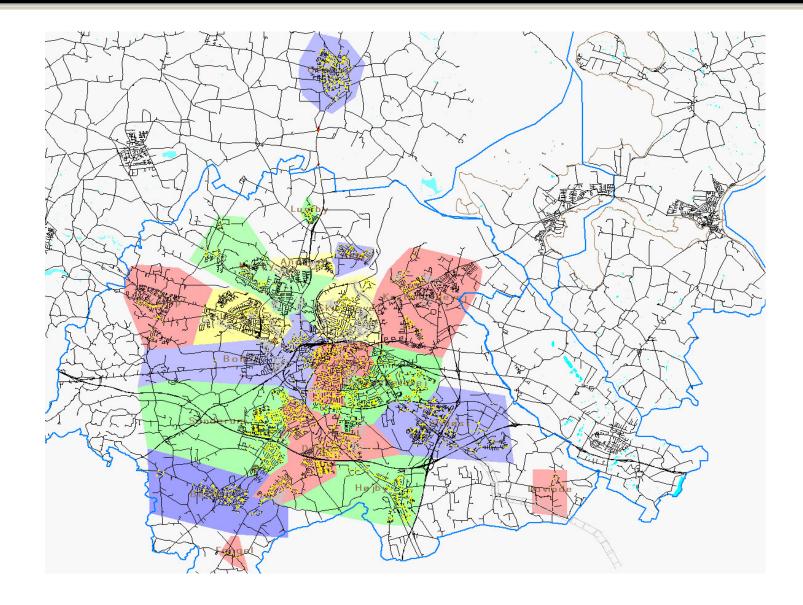
- Gross Volume: 75.000 m3
- Net Volume: 66.000 m3
- Net Energy Content: 4.145 MWh (92°C)


 i.e. 9 hour rated maximum heat production from Unit 7
- Max discharge: 10.000 m3/h or 627 MJ/s
 i.e. about 75% of rated maximum heat production from Unit 7
- This tank make it possible to planing stop at the plant and we have time enough to start boilers.

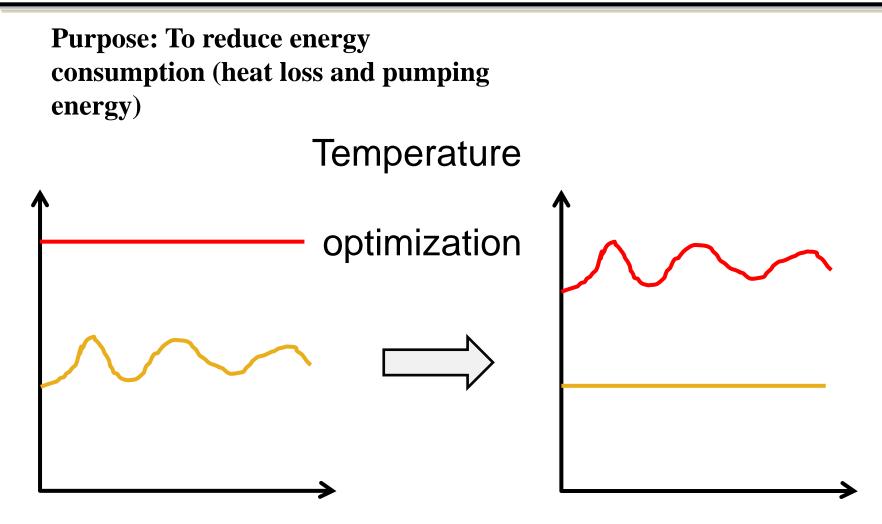


Dalum CHP

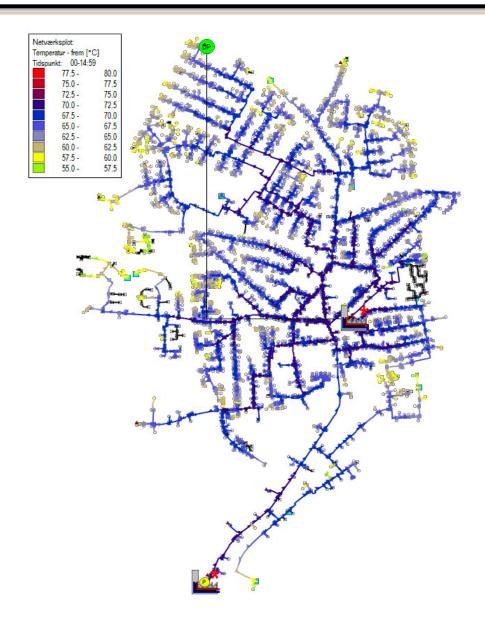
- **Former paper factory**
- **48 MJ/s thermal**
- **Wood chip fired**



Zone overview



- Fjernvarme Fyn A/S use TERMIS software for hydraulic and thermal modelling
- Models are build from GIS data (pipes, consumers)
- Network models used for:
 - design of network
 - What if scenario calculations, planning
 - Operation monitoring with realtime simulation models (intergration with SCADA system)
 - Optimazation of suply temperature
 - Pump optimazation



Supply temperature from central

Supply temperature at consumer

Temperature distribution

To reduce loss we use temperature optimization in the network, we have 18 shuntpumps for this

Restrictions

- Media velocity < 2 m/s
- Max pressure < 60 mVS
- Max pressure difference : 3,5 bar
- Min pressure difference : 0,5 bar
- **Temperature in distribution pipes> 60** °C

- In the DH system of Fjernvarme Fyn A/S the optimal supply temperature is the lowest possible that meets, either:
 - 1. the required minimum temperature of 60 degrees C in the distribution pipes in all parts of the network (summer and transition periods), or
 - 2. the demand for heat in cold periods without exceeding the pressure limits in the pipes and pumping capacity.
- By the end of 2012 temperature optimazation has been impelented in all supply zones.
- **The reduction of heat loss was approximately 10 %.**

Some wishes for results of CITIES regarding district heating in future smart energy systems

- Improved modeling of consumption / heat demand. For both operation and design of district heating network and production facilities.
- Tools for integrated optimization of operation of district heating systems, heat production, distribution and consumption
- **Tools for long term energy / investment planning**