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Introduction



Who am | (mostly working with) |

..lam

- A PhD student at the Technical University of Denmark

... mostly working with

- Distributed Energy Resources (DERs) in Microgrid
operation



Why Model Predictive Control (MPC) for District Heating Sys-

tems? |

Deferral of investments in additional infrastructure
Use installed system in a more efficient way

Sector coupling
Exploit additional degrees of freedom

— In which situations can we benefit from using MPC
approaches most?

Interleaved systems: Degrees of freedom in the control
decisions



DER’s in District Heating Systems: Solar Heating Injection sta-
tion example |
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Figure 1: Solar heat injection station example.



Control hierarchy aspects with MPC



A random process.. |
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A random process.. Il
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A random process.. Il

A quote:

Sometimes, the best (control) decision is
to do nothing

(Source: Unknown Professor)

— Sometimes the best control decision is
to do it differently



Why not split the control problem? An improvement... |

Real-time problem splitting: Optimized real-time controls

Time

Lightened problem } 1
{ Reference { { ‘

Complex problem } 1




Dynamic resource allocation given system condition |
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Dynamic resource allocation given system condition |
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Control hierarchy example: Lumped controls |

Static Problem

Operational Planning stage
(Stochastic Program)

N Optimized controls
(MPC)

Basic control
(PI, PID, Explicit MPC)
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Control hierarchy example: Separated treatment of Indirect Con-

trols |

Planning stage

Stochastic Program

Re-dispatch
Direct-Control MPC

Direct Control, fast dynamics

Indirect Control

Slow dynamics !

¥ v
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Model Predictive Control in heating
systems




Master-Slave controls |

The master problem

Q* = cpm*AY* (1)

— can be determined by the planning stage

The slave problem
Determine ¥* at controlled sub-stations:

- Directly controlled units

- Indirectly controlled units

— real-time collaborative MPC system support



A regulation example (Single actor) |




A regulation example (Single actor) II
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Figure 2: Single actor example.



A regulation example (Single actor) III

Figure 3: Bottleneck with respect to magnitude (line losses).



Collaborative MPC particularities |
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Collaborative MPC particularities Il

- System dynamics magnitudes highly matter for the
controller performance

- A homogeneous system is easier to control using MPC

- System gains should be normalized



Collaborative MPC particularities |

Figure 4: Improvement in the goal temperatures.



Example without predictions |

Figure 5: Improvement in the goal temperatures.



Example with predictions |

Figure 6: Improvement in the goal temperatures.



MPC formulations |

Classical regularized MPC

min I = |IY = RIG +|lul (2a)
St Xeg1 = Axe + Bur + Gd¢ 4+ wy (Zb)
Vi =Xt (2c)

GtUt < ht (2d)



MPC formulations Il

Tracking variation

min )= 1Y = RIR + lu— I3
St Xty = AXt + But + Gdt -+ Wi
Vi = Cx¢ (30)

Grue < hy (3d)



Temporal clustering and online system identification |
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Figure 7: Topological toy model.



- Co—optimizing 'certain’ and uncertain units as a
collaborative MPC
- Tracking of trajectories determined by either planning or
re—dispatch stage
- Economically optimal
- Risk optimal (Robust)
- Trade-off trajectories



Thank you for your attention |

Thank you
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Objective function |

Stabilization problem T1

Joosk = ||Px(Rk = Xoo,k) + Tl — oo o)1 (4)
Dynamic Programming problem T2

Jook = ||Up — Us_y + YWauAug|]? (5)
Portfolio constitution T3

Jer = (1 =)k (6)



Objective function: Overview |

mikn Jook + ook + ek (7)
u,

st Grugp < h/? (8)



(T1) Residual estimation |

Inferring input disturbance’

Rkt | _ [A Ba| [Xkk— B T
A1k 0 || |dkjk—r 0
Ly

L Vimk — CRejk—1 — Carje) (9)

We optimize over deviations encompassing the positive and negative domain — Only first optimal input
required satisfactory, imposing these constraints for the whole sequence up, N—1lk results in numerical issues.



(T1) Stabilizing gain |

Solving for g2 using least-squares approximation:

/—L/—Q’L
A—1 B| [geoo| _ [Ba (10)
C 0| |Gu,c0 0
Ba| yp—1
oo & M N
g ; (1)

2See Pannocchia and Rawlings 2003; Pannocchia and Rawlings 2001



(T1) Equilibrium point |




(T2) Dynamic programming terms |

Ensure offset-free control
— Even when constraints are active on parts of the portfolio



(T3) Portfolio constitution |

M, = allur — Uems klliv,, +
B(||Crul* + |1Ca,k(Uk — UEMs,fe)HﬁvAu ) (13)
where: a+ =1



Constraints |

General

Dynamic reformulation via supervisory system: considering
additional system knowledge

Grug < hy, (14)

Particularity: Ramp rate
Only the first optimal input in the sequence required binding'

Aupmip < u’f:Jr’]lfg - Uz‘k < AUmax (15)
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