Model Predictive Control in connection with district heating networks

Frederik Banis
April 4, 2019

Technical University of Denmark
Outline

Introduction

Control hierarchy aspects with MPC

Model Predictive Control in heating systems

Appendix
Introduction
... I am

• A PhD student at the Technical University of Denmark

... mostly working with

• Distributed Energy Resources (DERs) in Microgrid operation
Why Model Predictive Control (MPC) for District Heating Systems? I

Deferral of investments in additional infrastructure
Use installed system in a more efficient way

Sector coupling
Exploit additional degrees of freedom

→ In which situations can we benefit from using MPC approaches most?
Interleaved systems: Degrees of freedom in the control decisions

Frederik Banis (Technical University of Denmark)
Figure 1: Solar heat injection station example.
Control hierarchy aspects with MPC
A random process.. I
A random process.. II

Frederik Banis (Technical University of Denmark)
A quote:

Sometimes, the best (control) decision is to do nothing

(Source: Unknown Professor)

→ *Sometimes the best control decision is to do it differently*
Real-time problem splitting: Optimized real-time controls

Lightened problem

Complex problem

Time

Reference
Dynamic resource allocation given system condition I

- Computational budget

- Disturbance compensation at real-time:
 - Physical system
 - Sub-optimal controls

- MPC
- SP

- Physical system
- Optimal controls
- Sub-optimal controls

Frederik Banis (Technical University of Denmark)
Dynamic resource allocation given system condition I

Computational budget

Disturbance compensation at real-time:
- Physical system
- sub-optimal controls

- Physical system
- optimal controls
- sub-optimal controls

Frederik Banis (Technical University of Denmark)
Dynamic resource allocation given system condition I

Computational budget

Disturbance compensation at real-time:
- Physical system
- Sub-optimal controls

- Physical system
- Optimal controls
- Sub-optimal controls
Control hierarchy example: Lumped controls I

- Operational Planning stage
 - *(Stochastic Program)*

- Optimized controls
 - *(MPC)*

- Basic control
 - *(PI, PID, Explicit MPC)*

- Plant
 - *(Plant level PL)*

- Disturbances

- Dynamic Problem

- Problem size
Control hierarchy example: Separated treatment of Indirect Controls I

Planning stage

Stochastic Program

Direct–Control MPC

Direct Control, fast dynamics

Plant

Re–dispatch

Indirect Control

Slow dynamics

Prosumer
Model Predictive Control in heating systems
The master problem

\[\dot{Q}^* = c_p \dot{m}^* \Delta \vartheta^* \]

→ can be determined by the planning stage

The slave problem

Determine \(\vartheta^* \) at controlled sub–stations:

• Directly controlled units
• Indirectly controlled units

→ real–time collaborative MPC system support
A regulation example (Single actor)
A regulation example (Single actor) II

Figure 2: Single actor example.
Figure 3: Bottleneck with respect to magnitude (line losses).
Collaborative MPC particularities I
Collaborative MPC particularities II

- **System dynamics** magnitudes highly matter for the controller performance
 - A homogeneous system is easier to control using MPC
- System gains should be normalized
Figure 4: Improvement in the goal temperatures.
Figure 5: Improvement in the goal temperatures.
Figure 6: Improvement in the goal temperatures.
Classical regularized MPC

\[
\min_u J = \|Y - R\|_Q^2 + \|u\|_R^2 \\
\text{s.t.} \quad x_{t+1} = Ax_t + Bu_t + Gd_t + w_t \\
y_t = Cx_t \\
G_t u_t \leq h_t
\]
Tracking variation

\[
\min_u J = ||Y - R||_Q^2 + ||u - \bar{u}||_R^2
\] \hspace{1cm} (3a)

s.t. \quad x_{t+1} = Ax_t + Bu_t + Gd_t + w_t \hspace{1cm} (3b)

\quad y_t = Cx_t \hspace{1cm} (3c)

\quad G_t u_t \leq h_t \hspace{1cm} (3d)
Figure 7: Topological toy model.
• Co-optimizing ‘certain’ and uncertain units as a collaborative MPC
• Tracking of trajectories determined by either planning or re-dispatch stage
 • Economically optimal
 • Risk optimal (Robust)
 • Trade-off trajectories
Thank you
Appendix
References

Objective function I

Stabilization problem T_1

$$J_{\infty,k} = ||\Phi_x(\hat{x}_k - x_{\infty,k}) + \Gamma_u(u_k - u_{\infty,k})||^2$$

(4)

Dynamic Programming problem T_2

$$J_{DO,k} = ||u_k - u^*_k - 1 + \gamma W_{\Delta u} \Delta u_k||^2$$

(5)

Portfolio constitution T_3

$$J_{C,k} = (1 - \gamma)\Pi_k$$

(6)
Objective function: Overview I

\[\min_{u,k} \ J_{\infty,k} + J_{DO,k} + J_{C,k} \] \tag{7}

\[\text{s.t.} \ \ G_k u_k \leq h_k \] \tag{8}
Inferring input disturbance\(^1\)

\[
\begin{bmatrix}
\hat{x}_{k+1|k} \\
\hat{d}_{k+1|k}
\end{bmatrix} =
\begin{bmatrix}
A & B_d \\
0 & I
\end{bmatrix}
\begin{bmatrix}
\hat{x}_{k|k-1} \\
\hat{d}_{k|k-1}
\end{bmatrix} +
\begin{bmatrix}
B \\
0
\end{bmatrix} u_k +
\begin{bmatrix}
L_1 \\
L_2
\end{bmatrix}
(y_{m,k} - C\hat{x}_{k|k-1} - C_d \hat{d}_{k|k-1}) \quad (9)
\]

\(^1\)We optimize over deviations encompassing the positive and negative domain → Only first optimal input required satisfactory, imposing these constraints for the whole sequence \(u_{k+N-1|k}\) results in numerical issues.
Solving for g_∞^2 using least-squares approximation:

\[
\begin{bmatrix}
M \\
A - I & B \\
C & 0
\end{bmatrix}
\begin{bmatrix}
g_x,\infty \\
g_u,\infty
\end{bmatrix}
= \begin{bmatrix}
B_d \\
0
\end{bmatrix}
\quad (10)
\]

\[
g_\infty \approx \begin{bmatrix}
B_d \\
0
\end{bmatrix} M^{-1} \quad (11)
\]

\(^2\text{See Pannocchia and Rawlings 2003; Pannocchia and Rawlings 2001}\)
(T1) Equilibrium point I

\[
\begin{bmatrix}
x_\infty \\
u_\infty
\end{bmatrix} = g_\infty \hat{d}
\] (12)
Ensure offset-free control

→ Even when constraints are active on parts of the portfolio
\[
\Pi_k = \alpha \| u_k - u_{EMS,k} \|_{W_{\Delta u}}^2 + \\
\beta(\| \tilde{c}_k u_k \|^2 + \| \tilde{c}_{\Delta,k}(u_k - u_{EMS,k}) \|^2_{W_{\Delta u}})
\]

where: \(\alpha + \beta = 1 \)
General
Dynamic reformulation via supervisory system: considering additional system knowledge

\[G_k u_k \leq h_k \] (14)

Particularity: Ramp rate
Only the first optimal input in the sequence required binding

\[\Delta u_{\text{min}} \leq u_{k+1|k}^* - u_{k|k}^* \leq \Delta u_{\text{max}} \] (15)