Model Predictive Control in connection with district heating networks

Frederik Banis

April 4, 2019

Technical University of Denmark

Outline

Introduction

Control hierarchy aspects with MPC

Model Predictive Control in heating systems

Appendix

Introduction

Who am I (mostly working with) I

... I am

· A PhD student at the Technical University of Denmark

... mostly working with

Distributed Energy Resources (DERs) in Microgrid operation

Why Model Predictive Control (MPC) for District Heating Systems? I

Deferral of investments in additional infrastructure
Use installed system in a more efficient way

Sector coupling

Exploit additional degrees of freedom

 \rightarrow In which situations can we benefit from using MPC approaches most?

Interleaved systems: Degrees of freedom in the control decisions

DER's in District Heating Systems: Solar Heating Injection station example I

Figure 1: Solar heat injection station example.

Control hierarchy aspects with MPC

A random process.. I

A random process.. II

A random process.. III

A quote:

Sometimes, the best (control) decision is to do nothing

(Source: Unknown Professor)

→ Sometimes the best control decision is to do it differently

Why not split the control problem? An improvement... I

Real-time problem splitting: Optimized real-time controls

Dynamic resource allocation given system condition I

Dynamic resource allocation given system condition I

Dynamic resource allocation given system condition I

Control hierarchy example: Lumped controls I

Control hierarchy example: Separated treatment of Indirect Controls I

Model Predictive Control in heating

systems

Master-Slave controls I

The master problem

$$\dot{Q}^{\star} = c_{p} \dot{m}^{\star} \Delta \vartheta^{\star} \tag{1}$$

 \rightarrow can be determined by the planning stage

The slave problem

Determine ϑ^* at controlled sub-stations:

- Directly controlled units
- Indirectly controlled units
- ightarrow real–time collaborative MPC system support

A regulation example (Single actor) I

A regulation example (Single actor) II

Figure 2: Single actor example.

A regulation example (Single actor) III

Bottlenecks: Sufficient influx temperature levels

Figure 3: Bottleneck with respect to magnitude (line losses).

Collaborative MPC particularities I

Collaborative MPC particularities II

- System dynamics magnitudes highly matter for the controller performance
 - · A homogeneous system is easier to control using MPC
- System gains should be normalized

Collaborative MPC particularities I

Figure 4: Improvement in the goal temperatures.

Example without predictions I

Figure 5: Improvement in the goal temperatures.

Example with predictions I

Figure 6: Improvement in the goal temperatures.

MPC formulations I

Classical regularized MPC

$$\min_{U} J = ||Y - R||_Q^2 + ||u||_R^2$$
 (2a)

s.t.
$$X_{t+1} = AX_t + Bu_t + Gd_t + w_t$$
 (2b)

$$y_t = Cx_t \tag{2c}$$

$$G_t u_t \le h_t$$
 (2d)

MPC formulations II

Tracking variation

$$\min_{u} J = ||Y - R||_{Q}^{2} + ||u - \bar{u}||_{R}^{2}$$
 (3a)

s.t.
$$x_{t+1} = Ax_t + Bu_t + Gd_t + w_t$$
 (3b)

$$y_t = Cx_t \tag{3c}$$

$$G_t u_t \le h_t \tag{3d}$$

Temporal clustering and online system identification I

Figure 7: Topological toy model.

Summary I

- Co-optimizing 'certain' and uncertain units as a collaborative MPC
- Tracking of trajectories determined by either planning or re-dispatch stage
 - · Economically optimal
 - Risk optimal (Robust)
 - Trade-off trajectories

Thank you for your attention I

Thank you

Appendix

References

Gabriele Pannocchia and James B. Rawlings. "Disturbance Models for Offset-Free Model-Predictive Control". In: *AIChE journal* 49.2 (2003), pp. 426–437.

Gabriele Pannocchia and James B. Rawlings. "Robustness of MPC and Disturbance Models for Multivariable Ill-Conditioned Processes". In: TWMCC, Texas-Wisconsin Modeling and Control Consortium (2001).

Objective function I

Stabilization problem T1

$$J_{\infty,k} = ||\Phi_{x}(\hat{x}_{k} - x_{\infty,k}) + \Gamma_{u}(u_{k} - u_{\infty,k})||^{2}$$
(4)

Dynamic Programming problem T2

$$J_{\text{DO},k} = ||u_k - u_{k-1}^* + \gamma W_{\Delta u} \Delta u_k||^2$$
 (5)

Portfolio constitution T3

$$J_{\mathsf{C},k} = (1 - \gamma) \Pi_k \tag{6}$$

Objective function: Overview I

$$\min_{u,k} J_{\infty,k} + J_{DO,k} + J_{C,k}$$
 (7)

s.t.
$$G_k u_k \le h_k$$
 (8)

(T1) Residual estimation I

Inferring input disturbance¹

$$\begin{bmatrix} \hat{\mathbf{x}}_{k+1|k} \\ \hat{\mathbf{d}}_{k+1|k} \end{bmatrix} = \begin{bmatrix} A & B_d \\ 0 & I \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_{k|k-1} \\ \hat{\mathbf{d}}_{k|k-1} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k + \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} (y_{m,k} - C\hat{\mathbf{x}}_{k|k-1} - C_d\hat{\mathbf{d}}_{k|k-1})$$
(9)

¹We optimize over deviations encompassing the positive and negative domain \rightarrow Only first optimal input required satisfactory, imposing these constraints for the whole sequence $u_{k+N-1|k}$ results in numerical issues.

(T1) Stabilizing gain I

Solving for g_{∞}^2 using least-squares approximation:

$$\begin{bmatrix}
A - I & B \\
C & 0
\end{bmatrix}
\begin{bmatrix}
g_{x,\infty} \\
g_{u,\infty}
\end{bmatrix} = \begin{bmatrix}
B_d \\
0
\end{bmatrix}$$

$$g_{\infty} \approx \begin{bmatrix}
B_d \\
0
\end{bmatrix} M^{-1}$$
(11)

²See Pannocchia and Rawlings 2003; Pannocchia and Rawlings 2001

(T1) Equilibrium point I

$$\begin{bmatrix} x_{\infty} \\ u_{\infty} \end{bmatrix} = g_{\infty} \hat{d} \tag{12}$$

(T2) Dynamic programming terms I

Ensure offset-free control

ightarrow Even when constraints are active on parts of the portfolio

(T3) Portfolio constitution I

$$\Pi_{k} = \alpha ||u_{k} - u_{\text{EMS},k}||_{W_{\Delta u}}^{2} + \beta (||\tilde{c}_{k}u_{k}||^{2} + ||\tilde{c}_{\Delta,k}(u_{k} - u_{\text{EMS},k})||_{W_{\Delta u}}^{2})$$
 where: $\alpha + \beta = 1$ (13)

Constraints I

General

Dynamic reformulation via supervisory system: considering additional system knowledge

$$G_k u_k \le h_k \tag{14}$$

Particularity: Ramp rate

Only the first optimal input in the sequence required binding¹

$$\Delta u_{\min} \le u_{k+1|k}^{\star} - u_{k|k}^{\star} \le \Delta u_{\max}$$
 (15)