

Some perspectives for use of data in DH systems

CITIES Aarhus Workshop

NAVITAS, Aarhus, January 2017

Henrik Madsen, www.henrikmadsen.org

DTU Compute

Department of Applied Mathematics and Computer Science

Contents

- A single sensor (smart meter) (UA, ..)
- Several sensors (dyn.)
- Modeling and operation of DH systems
- Price-based control in DH systems

In all cases: MET data is used

Case Study No. 1

Modelling of Thermal Performance of Buildings using Meter Data

Energy consumption in DK

Examples (2)

Measured versus predicted energy consumption for different dwellings

æ

Using Data from Smart Meters

- Energy labelling
- Estimation of UA and gA values
- Estimation of energy signature
- Estimation of dynamic characteristics
- Estimation of time constants

Results

	UA	σ_{UA}	gA^{max}	wA_E^{max}	wA_S^{max}	wA_W^{max}	T_i	σ_{T_i}
	$W/^{\circ}C$		W	$W/^{\circ}C$	$W/^{\circ}C$	$W/^{\circ}C$	°C	
4218598	211.8	10.4	597.0	11.0	3.3	8.9	23.6	1.1
4381449	228.2	12.6	1012.3	29.8	42.8	39.7	19.4	1.0
4711160	155.4	6.3	518.8	14.5	4.4	9.1	22.5	0.9
4836681	155.3	8.1	591.0	39.5	28.0	21.4	23.5	1.1
4836722	236.0	17.7	1578.3	4.3	3.3	18.9	23.5	1.6
4986050	159.6	10.7	715.7	10.2	7.5	7.2	20.8	1.4
5069878	144.8	10.4	87.6	3.7	1.6	17.3	21.8	1.5
5069913	207.8	9.0	962.5	3.7	8.6	10.6	22.6	0.9
5107720	189.4	15.4	657.7	41.4	29.4	16.5	21.0	1.6

т т т т

•

.

.

.

Aarhus Workshop - Data in DH Systems, January 2017

.

Perspectives for using data from Smart Meters

- Reliable Energy Signature.
- Energy Labelling
- Time Constants (eg for night setback)
- Proposals for Energy Savings:
 - Replace the windows?
 - Put more insulation on the roof?
 - Is the house too untight?
 -
- Optimized Control
- Integration of Solar and Wind Power using DSM

Case study No. 2

Modelling the thermal characteristics of a small office building

Using More Sensors

 A model for the thermal characteristics of a small office building

Flexhouse at SYSLAB (DTU Risø)

Model found using Grey-box modelling (..... using CTSM-R – http://smart-cities-centre.org/software-solutions/)

Case study No. 3

Models for DH Systems

CITIES Centre for IT Intelligent Energy Systems

Horisont [timer]

Models and Controllers (Highly simplified!)

Characteristics 30%, 40%, 50%

Prob. constraints Controller set-points

Temp at User

Observed User Temp.

Supply temperature with/without predictive control

Graddage pr. måned

Savings (Reduction of heat loss = 18.3 pct)

	Varme	ekøb	Elkøb		
	GJ	1000kr	kWh	1000kr	
Før PRESS	653,000	30,750	499,000	648	
Med PRESS	615,000	28,990	648,000	842	
Forskel	37,400	1,760	-149,000	-194	

Total besparelse (9 første måneder af normalår): 1,566,000kr

Besparelse for et normalår:

- $12/9 \times 1,566,000$ kr = **2.1 mill.**
- Imidlertid står jan.–sept. (75% af året) kun for ca. 65% af graddagen i er normalår.
- 1,566,000kr/0.65 = **2.4 mill.**

Control of Temperatures in DH Systems

Lesson learned:

- Control using simulation of temperature gives up to 10 pct reduction of heat loss.
- Control using data and predictions gives up to 20 pct. reduction of heat loss.

FJERNVARMEN | 5 2010

Styring af temperatur rummer kæmpe sparepotentiale

Which approach to use?

- Use simulation based control if:
 - No access to data from the DH network
 - Want evaluation of new operational scenarios
- Use prediction based control if:
 - Access to network data online
 - Want to used meteorological forecasts automatically
 - Want automated update of models

Case study No. 4

Storage of Energy Using the Thermal Mass of Buildings

SN-10 Smart House Prototype

Aarhus Workshop - Data in DH Systems, January 2017

Centre for IT Intelligent Energy Systems

Non-parametric Response on Price Step Change

Model inputs: price, minute of day, outside temperature/dewpoint, sun irrandiance

Olympic Peninsula

Control performance

With a price penality avoiding its divergence

- Considerable reduction in peak consumption
- Mean daily consumption shift

For more information ...

• See for instance

www.henrikmadsen.org

www.smart-cities-centre.org

- ...or contact
 - Henrik Madsen (DTU Compute) hmad@dtu.dk

Acknowledgement CITIES (DSF 1305-00027B)

Some of the other Demo-Projects in CITIES

- Control of WWTP (with ED, Kruger, ..)
- Heat pumps (Grundfos, Enfor, EconGRID,)
- Supermarket cooling (Danfoss, TI, ..)
- Summerhouses (SE, ONE, NEAS, ..)
- Green Houses (NeoGrid, Fjv. Fyn, ...)
- CHP (EMD, Dong, ...)
- Industrial production
- EVs (optimal charging) (Eurisco, mv.)

Example

Consequence of good or bad workmanship (theoretical value is U=0.16W/m2K)

Centre for IT Intelligent Energy Systems

Temporal and Spatial Scales

A *Smart-Energy Operating-System (SE-OS)* is used to develop, implement and test of solutions (layers: data, models, optimization, control, communication) for *operating flexible electrical energy systems* at **all scales**.

Forecasting is Essential

Tools for Forecasting: (Prob. forecasts)

- Power load
- Heat load
- Gas load
- Prices (power, etc)
- Wind power prod.
- Solar power prod.
- State variables (DER)

