

{2.71,82,81,82,84

Aggregation of building energy demands – Sønderborg case

WP3: Intelligent Energy System Integration

Panagiota Gianniou PhD student

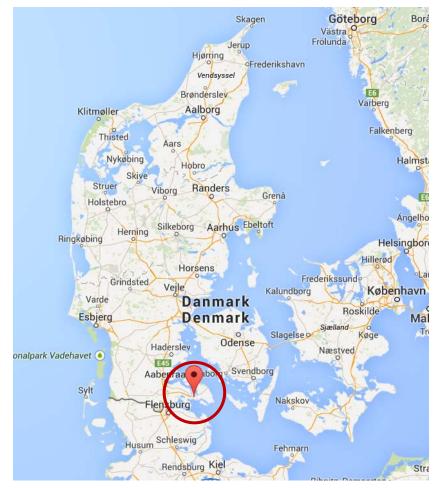
 $\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c_{\rho}} \frac{\partial^2 T}{\partial x^2}$

DTU Civil Engineering Department of Civil Engineering

Main objectives

- Investigate the existing ways of aggregating building energy demands by implementing them on real case-studies
- Propose a methodology for estimating realistic energy demand models for districts or cities
- Investigate different energy simulation tools
- Study domestic **flexibility** heat demand shifting to contribute to the overall stabilization of the energy grid

Implementation of city energy model (First case-study)



First case - Sønderborg

Population: 27,434

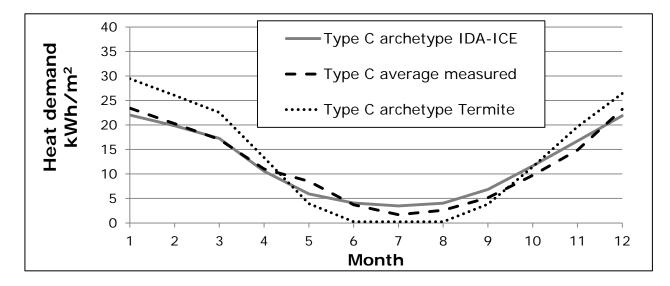
- Ambitious environmental-energy goals:
 - ✓ Become carbon neutral by 2029
 - ✓ Half its current energy consumption
 - ✓ Increase local RES penetration
- Building sector (3rd most carbon intensive)
 - ✓ New buildings: low energy class I
 - Sustainable district heating (solar, geothermal/biogas plants, heat pumps)

Implementation of city energy model

Description of the case study

- 16 one-floor single-family houses
- Located in Sønderborg, Denmark
- Constructed mainly in 1960s
- Floor areas: 85 175 m²
- Connected to local district heating network

Figure 1. Typical design of the single-family house



Implementation of city energy model

- The houses were classified into five building types based on their construction age
- > One **archetype** building represented each type

Two energy simulation tools were implemented:

These were compared to heat consumption measurements

Based on:

•

.

Rhinoceros® (CAD design)

Be10 - EN ISO 13790: 2008

Grasshopper[™] (visual

parametric interface)

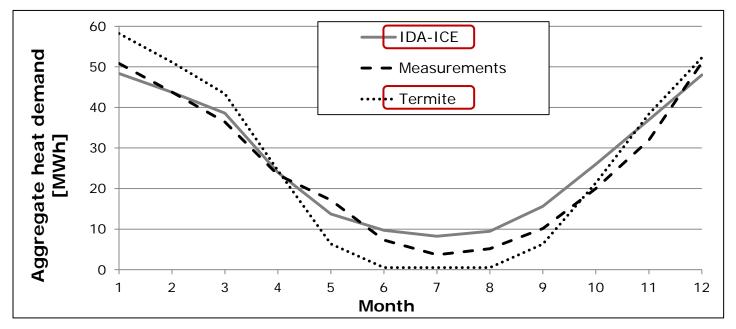
(energy simulations)

🥕 Termite – Be10 (simplified)

IDA-ICE (dynamic)

Implementation of city energy model

 Heat demand results from all five building types were aggregated according to:


$$Y = \sum_{j=1}^{N} EUI(j) A(j)$$

j = building type

N = total number of building types describing the stock

EUI = energy demand per floor area [kWh/m²]for each building type

 $A = \text{total floor area } [m^2] \text{ of all buildings}$ included in the respective type

Sønderborg – Data sets

1st data set: 16 houses

- o Constructed mainly in 1960s
- o Floor areas: 85 175 m²
- o No solar heating panels
- o No mechanical cooling

2nd data set: Ringgade

- Expand the sample to hundreds of houses
- District heating measurements provided by Kamstrup (hourly data)
- Data collected since Dec. 2014
- o Gas & electricity data

Sønderborg - Data sets

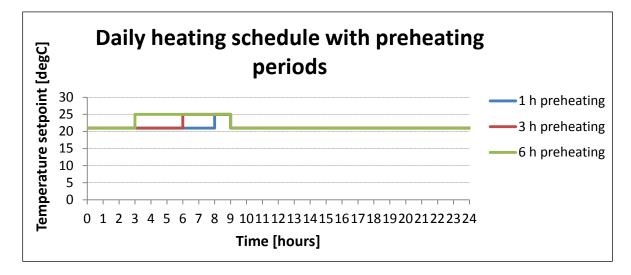
3rd data set: Sønderborg city

- o 72,717 registered addresses
- o BBR data
- Provided by MBBL
- o Heat measurements
 - MBBL (annual values)
- Electricity measurements

How to aggregate them?

- ✓ Use of archetypes
- Use of statistical methods (regression) to predict unknown parameters
- ✓ Use of urban scale energy simulation programs

Results by student Frederik Lynge Halvorsen

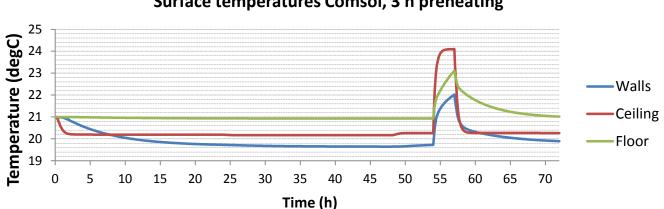

BESTEST building modeled in Comsol

(8x6x2.7m)

- 4 external walls, floor and ceiling
- The room is heated from 21°C to 25°C

Element	λ [W/m*k]	Thickness [m]	Density [kg/m ³]	Cp [J/kg*K]
Concrete block	0,510	0,100	1400	1000
Foam insulation	0,040	0,0615	10	1400
Wood siding	0,140	0,009	530	900
Floor (from inside to	o outside)	£)	8 - 13	
Element	λ [W/m*k]	Thickness [m]	Density [kg/m ³]	Cp [J/kg*K]
Concrete slab	1,130	0,080	1400	1000
Insulation	0,040	1,007	10	1400
Roof (from inside to	outside)	· · · · · · · · · · · · · · · · · · ·	4 01-01 12	
Element	λ [W/m*k]	Thickness [m]	Density [kg/m ³]	Cp [J/kg*K]
Plasterboard	0,160	0,010	950	840
Fibreglass quilt	0,040	0,1118	12	840
Roof deck	0,140	0,019	530	900

• 3 cases of **preheating** the room were studied: 1h, 3h, 6h



Domestic flexibility – work status

Surface temperatures Comsol, 3 h preheating

- The ceiling is very easy to heat up, but it also loses the heat quickly (made of plasterboard)
- The walls and floor is made of concrete. These take a longer time to heat up, but they also release the heat slower (made of concrete)
- The flexibility of the **walls** can be utilized to postpone the heating demand. ٠
- By heating the walls during the preheating period we can **shift** the heating demand by some hours.

Preheating period	1 hour	3 hours	6 hours
Load shift potential	0.5 hours	1 hour	4 hours

Next steps – To be answered

 \Box Expand the sample to a **larger** building population \rightarrow collect case studies

Combine dynamic and steady-state energy simulation methods to fit measured data

Challenges to be met at **national** scale:

- Data availability: critical
- Simplify building models
- Reduce simulation times
- Majority of buildings are old
- Lack of smart energy systems (energy metering) in most buildings
- User profiles differentiate every building

□ Flexibility potential: test more simulation tools (heat transfer models)

- □ What is the **minimum** possible level of **information** to model building stock?
- □ How much can building **typologies** contribute to this?
- □ Which **time step** is the optimum for building energy simulations?

Thank You!

Panagiota Gianniou

PhD student

DTU Civil Engineering Department

pagian@byg.dtu.dk