KPIs for Smart Liveable Cities: From Data to Design

Annemie Wyckmans, Acting Dean, Head of NTNU Smart Sustainable Cities CITIES 3rd General Consortium Meeting, Lyngby, 25 May 2016

Contributors:

Dirk Ahlers, Tone Woie Alstadheim, Fredrik Anthonisen, Patrick Driscoll, Luca Finocchiaro, Hans Henrik Grønsleth, Eszter Juhasz-Nagy, Gabriele Lobaccaro, Edvard Schreiner Sjøblom, Yu Wang, Håvard Wibe

An Integrated Approach for Urban Layout, Urban Infrastructures and Management

1

the address for

An Integrated Approach for Urban Layout, Urban Infrastructures and Management

Cities and their citizens want high quality of life and low greenhouse gas emissions

The (smart) city should make it easy, fast and affordable to live a highquality sustainable life

Global policy effort:

UN Sustainable Development Goals

China's 13th 5-year plan

EU Energy Union

Urban Europe Strategic Research and Innovation Agenda

National policies and programmes

=

Energy-efficient Climate-Resilient Smart, Circular Economy Health-Promoting

Policy + Data + Design + People + Partnerships ++

- Well-documented data can support development of environmental strategies of city, regional and national authorities
- Decision support for green transition and growth, moving away from business as usual
- Integrated models for planning & management
- Better cooperation across the value chain
- More effective investments
- New jobs, e.g. in data certification, data management, smart infrastructures

Project Example: The Research Centre on Zero Emission Buildings / Zero Emission Neighbourhoods in Smart Cities (Application)

ZEB The Research Centre on Zero Emission Buildings (2009-2016)

Develops competitive products and solutions for existing and new buildings

That will lead to market penetration of buildings with zero greenhouse gas emissions

Related to their production, operation, and demolition.

The centre encompasses new and existing buildings, residential, commercial, and public buildings

www.zeb.no

The Research Centre on Zero Emission Buildings

ZEB The Research Centre on Zero Emission Buildings (2009-2016)

22 industry / public sector partners

Users (the reference group)

Contractors

Manufacturers of materials and products for the building industry

Consultants, architects

Trade organizations

Property managers

Public administration

University and research institutions

The Research Council

International partners VTT (Finland) Chalmers (Sweden) Fraunhofer (Germany) TNO (The Netherlands) LBNL (USA) MIT (USA) University of Strathclyde (Scotland) Tsinghua University (China) Politecnico di Torino Shanghai JiaoTong University EMPA

ZEB The Research Centre on Zero Emission Buildings (2009-2016)

- WP1 Advanced material technologies
- **WP2** Climate-adapted low-energy envelope technologies
- **WP3** Energy supply systems and services

ZE

WP4 Use, operation, and implementationWP5 Concepts, strategies and pilot projects

Nano insulation material

ZEB Definition

VIP Leca Isoblokk

Membrane heat exchanger

ZEB Pilot buildings

8 ZEB Pilot Buildings + 1 Living Lab

The Research Centre on Zero Emission Buildings

ZEN The Research Centre on Zero Emission Neighbourhoods in Smart Cities (application)

33 partners from industry, research and public authorities living labs in at least 7 cities

ZEN – The Research Centre on Zero Emission Neighbourhoods in Smart Cities

ZEN The Research Centre on Zero Emission Neighbourhoods in Smart Cities (application)

Oslo: Furuset

Bergen: Zero Village Bergen Elverum: Ydalir Trondheim: Knowledge Axis Bodø: Airport area

Steinkjer: Residental area

Evenstad: Campus

Population of 30 000 people Built floor area of more than 1 million m²

ZEB Flexible Lab office building, NTNU Campus ZEB Living Lab residential building, NTNU Campus

Illustration: FutureBuilt

Project Example: Knowledge Axis / Carbon Track and Trace

Knowledge Axis Trondheim

MIDTBYEN

Trondheim spektrum HIST - Kalvskinnet NTNU - Vitenskapsmuseet

ELGESETER

St. Olavs hospital NTNU - Gløshaugen HiST - handelshøyskolen Enova

TEMPE

Trønderenergi Sintef NINA Scandic konferanse

SLUPPEN

Siemens Evry

Trondheim Living Lab, Demonstration projects on energy, transport and ICT

New and better data by using sensors, satelite, GIS, cell phones etc

Better use of data in urban planning and design

<u>Mobility Management</u>: More environment-friendly transport policy

High quality of urban environment

1000

<u>Blue-green infrastructures:</u> Nature-based solutions

Re-use and transformation of historic buildings and districts

<u>Triple Helix cooperation</u> between city and regional authorities, industries, research and citizens

<u>Influence citizen behaviour</u> by better visualisation and dissemination of the information, smarter communication platforms, apps, art etc.

Carbon Track and Trace

- Cities have little data on their GHG emissions base lines
- Uncertainties in GHG emissions data are huge
- Investments cannot be linked to reduction impacts
- We measure local GHG concentrations through an IoT network
- Low-cost technology enables large network of sensors

- We turn sensor measurements into a city emission overview
- Additional open data sets can be included into the analytics
- Direct feedback through real-time visualization of trends
- Effective policy optimization through fast feedback loops

CTT 2.0 Stop guessing – start measuring

Politicians

Planners

Climate Smart Through the Use of Data

Trondheim becomes climate smart: Carbon Track and Trace

Join us for 24-hour hack focused on these 3 challenges:

/		
(\sim	1
U	<u>ц</u>	
N	_	,

) How can you use existing open data sets to calibrate and check official reported emissions from Statistics Norway?

How can the data from ground-level emissions sensors be integrated into the existing planning and decision support systems?

Existing sensor systems are expensive, so can we build cheaper, open source sensor systems?

Register at: billetto.no/en/events/climathon-trondheim

7-8 January 2016: 50 participants, 24 hours, pitching good ideas to the city authorities, development of new business ideas Next Event / Hackathon: 5-6 September 2016

Project Example: RAMSES Climate Change Adaptation, Mitigation and Sustainable Development of Cities

Cookbook for Integrated Assessment of Cities

- Understanding Cities: The imperative for integration
- A review and analysis of quantitative integrated environmental assessment methods for urban areas
- Adaptation and mitigation how addressing climate issues stimulates integrated thinking
- Green and blue infrastructures as enablers of resilient cities
- A policy and governance context for integrated urban sustainability strategies
- Understanding Cities: The way forward for integrated assessment

Understanding Cities:

- Green infrastructure as a tool of urban areas sustainable development
- Eco-spatial indices green infrastructure site scale solutions
- Planning measures for ecosystem-based adaptation capacity of cities: a comparative study
- Sustainability indicators for urban water environments
- Evidence on the contribution of green urban infrastructure to climate change mitigation and adaptation

http://iaforcities.com; http://www.ncl.ac.uk/ceser/researchprogramme/costactiontu0902/Final_All_CoverLo.pdf

RAMSES Climate Change Adaptation, Mitigation and Sustainable Development of Cities www.ramses-cities.eu

Ban Ki Moon Secretary General of the United Nations "The road to sustainability runs through the world's towns and cities. By building sustainable towns and cities, you will build global sustainability"

Financed by EU FP7, Cooperation with 8 cities around the globe: Hyderabad, Bogota, Rio de Janeiro, New York, London, Antwerp, Bilbao, Skopje

- Cooperation with the World Health Organisation
- Climate change has serious consequences for health: more extreme weather, precipitation, humidity, temperature, accessibility of water, clean air etc.
- Increased risk for illness and mortality
- Need for health-promoting environments, both indoors and outdoors
- Economic consequences? Insurance, productivity...

	#	Measure	Title
			Flood adapted construction
Description	Green root - flooding		Flood adapted HVAC
Type of	roots partially or completely covered with vegetation		Flood adapted location
infrastructur	ur green/blue		Flood adapted use
е			Building insulation - energy
Scale of	nta building/site		Building insulation - heatwaves
implementa tion			Blue roof
Main threat	ain threat ddressed flooding (sea, tidal, fluvial and pluvial)		Building shading - energy
addressed			Building shading - heatwaves
Expected outcome Performanc e indicator	temporal buffer for water runoff: "intercept, retain, and	CIR	Critical infrastructure location
	evapotranspire between 34% and 69% of precipitation, w	^{/ith an} CPH	Cool pavements
	average retention of 56% (Gregoire et al. 2011, p 963)	CRH	Cool roof
		DER	Decentralised renewable energy systems
	[(precipitation-runoπ)/precipitation)]×100	EEH	Energy efficient appliances
	peak & average (Gregoire et al. 2011, p 963)	ETH	Electric transport
Affected urban surface parameters	Plane area index (λp) Example 2 France index (λf) Albedo (g)	GFH	Green façade
	Building height (h) \square	_(λp) GMR	Electrical grid monitoring & control systems
	□ Vegetative type (vty	p) GRF	Green roof - flooding
		GRH	Green roof - heatwaves
Resilience dimensions	Adaptability, flexibility Performance	MER	Multiple energy modes
	safe failure	larity MNF	Multipurpose flood management zones - green
	Dependence on local	MTR	Multiple transport modes
	⊠ ecosystems □ Robustness	MYF	Multipurpose flood management zones - grey
		NTH	Non-motorized transport
	Learning, memory	PPF	Permeable pavements
Scientific references	2014 State-of-the-art analysis of the environmental ben	A efits of RHD	Rainwater harvesting - drought
	green roofs', Applied Energy, vol. 115, pp. 411–428.		Rainwater harvesting - flood
	Carter. T & Keeler. A 2008. 'Life-cvcle cost–benefit analy	sis of UBF	Urban lakes and water bodies - flooding
	extensive vegetated roof systems', Journal of Environmental		Urban lakes and water bodies – heatwaves
	Management, vol. 87, no. 3, pp. 350–363.		Urban vegetation, trees and parks - flooding
	Ftc		Urban vegetation trees and parks - heatwayes

We need to identify win-win solutions, added value, co-benefits

We need an integrated approach between

sectors

- Energy
- Health
- Sustainability
- Water
- Transport
- Housing
- Green structures
- ICT
- Waste
- Economy

Urban & Regional Planners; Network Planners; Architects; Process Engineers; Power Engineers; Site Engineers; Installers; Technicians; Land Use Planners; Simulation Engineers; Structural Engineers; Supply Design Engineers; Landscape Planners; Automation Engineers; Facility Managers; HVAC Planners; Energy Strategy Developers; Component Designers; Automation Engineers; Energy Managers; Maintenance Engineers; Building Physicists; Stakeholder Process Managers; Environmental Engineers; ICT Engineers; Electro Planners; Consultants; Ecologists; Material Scientists; Waste & Water Engineers; Welders; Geotechnical Engineers; Forecasting Experts; Acoustic Engineers; Logistics Planners; Control Engineers; Fire Protection Engineers; System Analysts; Mobility Engineers; Optimisation Experts; Façade Engineers; Technology Developers; Policy Advisors; Production Engineers; Real Estate Managers; Master Builders; Economists; Interior Designers; Climate Scientists; Light Planners; Inspectors; Transition Experts...and INTEGRATORS

KPIs for Smart Liveable Cities

- High performance
- High quality
- Integrated solutions

Annemie.Wyckmans@ntnu.no www.smartsustainablecities.org

EERA Conference, Birmingham, 24-25 November 2016

Session on Energy Systems

- System real-time monitoring and data management
- Smart Zero Emission Cities, from Data to Design
- System enhanced flexibility as a key factor to Renewables integration
- Energy Efficiency in food and drink manufacturing
- Energy Systems: An integrated effort by industry, public sector and research